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Lecture 1

1. Winding numbers

Let x ∈ R2 and let γ be an oriented closed curve in R2 − {x}. Our goal in this section is
to define the winding number:

w(γ, x) = “number of times γ winds round x”

The winding number is signed: + for counterclockwise, − for clockwise.

The definition must be rigorous and usable (so that we can prove theorems with it). We
will apply this to:

• the fundamental theorem of algebra,

• the Brouwer fixed-point theorem,

• the sensor network coverage problem.

1.1. Angles in R2. We wish to define an angle function for points in the plane. This is
essentially the same as the ‘argument’ of a nonzero complex number, so we use the same
function name, ‘arg’.

Let a ∈ R2 − {0}. Then

arg(a) = “angle between the positive x-axis and ~0a”

Example. Consider the point (1, 1).

arg((1, 1)) = π
4

or π
4

+ 2π or π
4
− 2π or . . .

= π
4

+ 2πn (any n ∈ Z)

Formally, arg(a) is not a real number, but an element of the quotient set R/2πZ. An element
of this quotient set is an equivalence class of numbers:

[φ] = {all numbers of the form φ+ 2πn, where n ∈ Z}
Thus arg((1, 1)) = [π

4
] = [9π

4
] = [−7π

4
] etc.

Remark. Just like R, the quotient set R/2πZ is an abelian group. You can add or subtract
two equivalence classes to get another equivalence class:

[φ1] + [φ2] = [φ1 + φ2], [φ1]− [φ2] = [φ1 − φ2].

You cannot multiply by arbitrary scalars. Suppose I wish to define

c[φ] = [cφ].

Well, let’s try multiplying by the scalar c = 1
2
. By the definition,

1
2
[0] = [1

2
· 0] = [0]

and
1
2
[2π] = [1

2
· 2π] = [π]
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Since [0] = [2π] the left-hand sides of these equations are the same. But the right-hand sides
are not the same. Our definition is inconsistent.

Notation. The degree symbol is defined ◦ = π
180

. For example, 360◦ = 360 · π
180

= 2π.

Suppose we want an angle function that takes values in R rather than in the quotient set
R/2πZ. Let us call that function arg to distinguish it from arg. It is required to satisfy
arg(a) = [arg(a)] for any a in its domain. We must compromise in one of two ways:

• We can require arg(a) to be a real number in a suitable range such as (−π, π] or [0, 2π).

• We can select a ray

Rφ =
{
a ∈ R2 − {0} | arg(a) = [φ]

}
∪ {0}

and remove it, defining

argφ : R2 −Rφ → (φ, φ+ 2π).

With the first approach, arg is discontinuous somewhere (on Rπ if the range is (−π, π], on
R0 if the range is [0, 2π), for example). With the second approach, the function is continuous
on its domain, but the domain is smaller.

Remark. How do we prove that argφ is continuous on R2 −Rφ?

• Here is a geometric argument. Consider a point a and a nearby point a + ∆a, both in
the domain. Suppose we wish |argφ(a + ∆a) − argφ(a)| < ε. By trigonometry, we can
ensure this by requiring that |∆a| is smaller than |a| sin ε and smaller than the distance
between a and the ray Rφ.

• Here is an algebraic argument. Consider arg−π, which is defined everywhere except the
negative x-axis and 0, and which takes values in (−π, π). By calculating the complex
square root of x+ yi, we can show that

arg−π((x, y)) = 2 arctan

(
y

x+
√
x2 + y2

)
.

Given this explicit formula, the standard rules of analysis imply that the function is
continuous over the region where x+

√
x2 + y2 is nonzero, which is precisely R2 −Rπ.

The continuity of arg−π implies the continuity of each argφ, for instance by rotating the
plane.

There are some easy explicit formulas for arg that are valid on different half-planes.

arg((x, y)) =


[arctan(y/x)] if x > 0

[arctan(y/x) + π] if x < 0

[− arctan(x/y) + π
2
] if y > 0

[− arctan(x/y)− π
2
] if y < 0
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The formulas inside the square brackets can be thought of as versions of arg defined over the
specified half-planes.

1.2. The angle subtended by a line segment. Given two points a,b ∈ R2 we let [a,b]
denote the directed line segment from a to b. We can parametrize this

γ : [0, 1]→ R2; γ(t) = a + t(b− a)

and we let

|[a,b]| = {a + t(b− a) | t ∈ [0, 1]}
denote the set of points on the line segment; this is a subset of R2.

Definition (angle cocycle). Let a,b ∈ R2 and suppose 0 6∈ |[a,b]|. Define

θ([a,b],0) = “the unique θ ∈ (−π, π) such that [θ] = arg(b)− arg(a)”

Despite the quotation marks, the definition is precise. There is certainly such a number θ in
the range (−π, π]; and θ = π is ruled out by the condition that 0 is not directly between a
and b.

Definition. More generally, suppose x 6∈ |[a,b]|. Define θ([a,b],x) = θ([a− x,b− x],0).

We think of θ([a,b],x) as the signed angle subtended at x by [a,b]. You can check that
the sign is positive if x, a,b are arranged counterclockwise, and negative if they are arranged
clockwise.

Remark. Note that θ([a,b],x) is a real number whereas arg(a) is an equivalence class of real
numbers. This is important. This whole concept of winding number is built on the ‘tension’
between R and R/2πZ.

Proposition 1.1. Fix a,b ∈ R2. The function x 7→ θ([a,b],x) is continuous over its
domain R2 − |[a,b]|.

Proof. Think of a,b,x as complex numbers. Consider t = (b− x)/(a− x). Because of the
way complex multiplication works, we have

arg(t) = arg(b− x)− arg(a− x)

On the other hand, because x 6∈ |[a,b]| we know that t does not lie on the ray Rπ, so

[arg−π(t)] = arg(b− x)− arg(a− x).

Since arg−π(t) lies in (−π, π), it must be “the unique θ” that we seek. It follows that we
have the explicit formula

θ([a,b],x) = arg−π

(
b− x

a− x

)
.

This is the composite of continuous functions, and hence is continuous over the domain where
it is defined, that is over R2 − |[a,b]|. �
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1.3. The discrete winding number. Let γ = P (a0, a1, . . . , an) denote the polygon whose
vertices are a0, a1, . . . , an ∈ R2 and whose edges are the directed line segments

[a0, a1], [a1, a2], . . . , [an−1, an].

We say that γ is a ‘directed’ polygon. It is closed if a0 = an. The support of γ is the set
of points

|γ| =
n⋃
k=1

|[ak−1, ak]|

on the edges of γ. This is a subset of R2. We will increasingly often think of γ as the sum
of its edges:

γ = [a0, a1] + [a1, a2] + · · ·+ [an−1, an] =
n∑
k=1

[ak−1, ak]

Since addition is supposed to be commutative, this notation suggests that the order of the
edges is not important.

Definition (winding number). Let γ = P (a0, a1, . . . , an) be a directed polygon, and let
x ∈ |γ|. The winding number of γ about x is defined:

w(γ,x) =
1

2π

n∑
k=1

θ([ak−1, ak],x)

Remark. If we do think of γ as the sum of its edges, then this formula is linear.

Example. In class, we considered an example with γ being the four edges of a square,
oriented counterclockwise, and three choices for x. It seemed that inside the square the
winding number of γ is 1, and outside the square the winding number is 0.

Theorem 1.2. Let γ be a closed directed polygon, and let x ∈ R2−|γ|. Then w(γ,x) is an
integer.

Proof. For each vertex ak, select a real number φk ∈ arg(ak −x). In other words, find a real
number such that arg(ak − x) = [φk]. Arrange also that φ0 = φn. Notice that for each k we
can write

θ([ak−1, ak],x) = φk − φk−1 + 2πmk

where mk ∈ Z. Summing from k = 1, . . . n we get

2πw(γ,x) = 2π(m1 + · · ·+mn)

since all the φk terms cancel out. Thus w(γ,x) = m1 + · · ·+mn is an integer. �

Remark. From the proof we see that each edge of γ contributes mk to the winding number.
We discern this contribution only when the polygon is closed, because that is when the φk
terms cancel out.
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1.4. Oriented 1-cycles. Which other configurations of directed edges give rise to an integer-
valued winding number?

Consider points a1, a2, . . . , an and b1,b2, . . . ,bn in R2. Let γ be the formal sum

γ = [a1,b1] + [a1,b2] + · · ·+ [an,bn] =
n∑
k=1

[ak,bk].

Such a thing is called a 1-chain, the ‘1’ referring to the fact the edges are 1-dimensional.

We say that γ is closed if every point in R2 occurs equally often in the collection (ak) as in
the collection (bk). In other words, if every point in the plane is a ‘head’ equally as often as it
is a ‘tail’. In other words, if the multi-set {a1, . . . , an} is equal to the multi-set {b1, . . . ,bn}.

A closed 1-chain is generally called a 1-cycle or sometimes just a cycle.

(We did some examples in class.)

Theorem 1.3. Let γ be a 1-cycle, and let x ∈ R2 − |γ|. Then w(γ,x) is an integer.

Proof. The proof is the same as for Theorem 1.2. Let arg be a fixed choice of real-valued
angle function defined on R2 − 0 (is is not, of course, continuous). Then for every edge we
have

θ([ak,bk],x) = arg(bk − x)− arg(ak − x) + 2πmk

for some mk ∈ Z. Summing over all edges, the arg terms cancel and we are left with
w(γ,x) = m1 + · · ·+mn. �

1.5. Formal properties of the winding number. We collect some basic results on the
winding number.

Winding number is additive. It is clear from the definition that if γ1, γ2 are 1-cycles then so
is γ1 + γ2. By linearity of the defining formula, it follows that if x ∈ R2 − |γ1| − |γ2| then

w(γ,x) = w(γ1,x) + w(γ2,x).

Winding number is locally constant. For a fixed γ, consider the domain R2 − |γ| of the
function x 7→ w(γ,x). This is in general a finite union of connected open sets (each set is
sometimes called a ‘chamber’).

Theorem 1.4. The function f(x) = w(γ,x) is constant on each connected component of
R2 − |γ|.

Proof. We know that f is continuous (being the sum of continuous functions 1
2π
θ([ak,bk],x))

and integer valued (by Theorem 1.3) so it must be locally constant. �

The ray escape formula. Consider a directed line segment [a,b] and a ray

Rφ(x) =
{
p ∈ R2 − {x} | arg(p− x) = [φ]

}
∪ {x}

(This is the ray originating at x at angle φ.)
8



Suppose x 6∈ |[a,b]| and a,b 6∈ Rφ(x). Then we can talk about the crossing number:

X([a,b], Rφ(x)) =


+1 if [a,b] crosses the ray in counterclockwise direction

−1 if [a,b] crosses the ray in clockwise direction

0 if [a,b] is disjoint from the ray

We can make this a little more formal using the real-valued angle function argφ : R2−Rφ →
(φ, φ+ 2π). By considering different cases, one sees that

counterclockwise crossing ⇔ −2π < argφ(b− x)− argφ(a− x) < −π
no crossing ⇔ −π < argφ(b− x)− argφ(a− x) < π

clockwise crossing ⇔ π < argφ(b− x)− argφ(a− x) < 2π

In more detail. To get a clockwise crossing, we need b to lie clockwise of the ray, a to lie
counterclockwise of the ray, and the angle between them on the ray side to be less than 180◦.
This is perfectly expressed by the inequality

argφ(b− x)− argφ(a− x) > π.

Given that argφ takes values in (φ, φ+ 2π), the other inequality

argφ(b− x)− argφ(a− x) < 2π

is always satisfied. The counterclockwise case is the same with a,b interchanged, and the
no-crossing case is everything that’s left.

Since θ([a,b],x) is required lie in the interval (−π, π), we can deduce what multiple of 2π
must be added to each quantity above to put it in the range (−π,+π). Specifically:

θ([a,b],x) = argφ(b− x)− argφ(a− x) +


2π counterclockwise crossing

0 no crossing

−2π clockwise crossing

We can summarize this as

(1.5) θ([a,b],x) = argφ(b− x)− argφ(a− x) + 2πX([a,b], Rφ(x))

whenever the crossing number is defined.

Remark. The formula (1.5) can be regarded either as a theorem about the crossing number,
or as a formal definition of the crossing number. Which logic do you prefer?

Corollary 1.6 (ray escape formula). Let γ =
∑n

k=1[ak,bk] be a 1-cycle. Let x ∈ R2 − |γ|,
and let Rφ(x) be a ray originating at x which meets none of the vertices of γ. Then

w(γ,x) =
n∑
k=1

X([a,b], Rφ(x))

Proof. Sum (1.5) over the edges of γ. The argφ terms cancel since γ is a 1-cycle. �

Using the results in this section, it is straightforward to determine the function x 7→ w(γ,x)
for any explicitly given 1-cycle γ.
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Lecture 2

1.6. The fundamental theorem of algebra.

Theorem 1.7 (The fundamental theorem of algebra). The field of complex numbers C is
algebraically closed. In other words, given a complex polynomial of degree d ≥ 1

p(z) = zd +
d−1∑
k=0

akz
k where a0, . . . , ad−1 ∈ C

there exist complex numbers λ1, . . . , λd such that

p(z) ≡ (z − λ1)(z − λ2) · · · (z − λd).

The λk are called the ‘roots’ of p, since p(λk) = 0 for all k.

The following equivalent version is easier to prove.

Theorem 1.8. Any complex polynomial of degree ≥ 1 has at least one root.

This implies Theorem 1.7 because if λ is a root of p then the long division of p(z) by
(z − λ) leaves remainder zero. Therefore p(z) = (z − λ) q(z) for some polynomial q(z), and
we can repeat (i.e. use induction) to factorize completely.

The field of real numbers R is not algebraically closed, since p(x) = x2 + 1 has no real
root. It does have the following property, which comes close.1

Proposition 1.9. However, let p(x) be a real polynomial of degree d where d is odd. Then
p(x) has a root.

Proof. The leading term xd “dominates” when |x| is large. Let R be a large positive number.
Then:

p(R) ≈ Rd > 0

p(−R) ≈ (−R)d = −Rd < 0 (since d is odd).

The intermediate value theorem now guarantees a root λ ∈ (−R,R). �

Details. Let us be precise about how large R has to be. Suppose

R > |a0|+ |a1|+ · · ·+ |ad−1| and R ≥ 1.

1How close? There is a Galois theory proof of FTA which uses only the fact that C is a quadratic extension
of a field (namely R) in which every odd-degree polynomial has a root.
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Then

p(R) = Rd +
d−1∑
k=0

akR
k

≥ Rd −
d−1∑
k=0

|ak|Rk

≥ Rd −
d−1∑
k=0

|ak|Rd−1 since R ≥ 1

= Rd−1 (R− (|a0|+ |a1|+ · · ·+ |ad−1|))

which is positive by choice of R. A similar calculation shows that p(−R) < 0. �

Remark. The IVT is a 1-dimensional topological theorem. We will prove the FTA by mim-
icking this argument in 2D. We replace the IVT by a topological theorem involving winding
numbers.

Strategy for proof of FTA. We will evaluate p(z) on circles z = re2πit, for varying values of r,
and we consider the winding number of the curves p(re2πit) about zero.

• When r is very large, the zd term dominates and w(p(re2πit), 0) = d,

• When r = 0, the curve is constant and the winding number is zero.

• Therefore, for some intermediate value of r, the curve p(re2πit) must cross zero.

To make this work, we must rigorously define w(f, 0) and establish the necessary properties.

1.7. Loops and homotopies. Previously, we defined winding numbers for 1-cycles. Now
we will define winding numbers for closed curves. To begin with, we must talk about loops,
as well as an equivalence relation between loops called homotopy. This equivalence relation
allows us to use loops to detect the topology of a region D in the plane.

Definition. Let D ⊆ R2. A loop in D is a continuous function

f : [0, 1]→ D

such that f(0) = f(1). The set of all loops in D is denoted Loops(D).

Definition. Two loops f, g ∈ Loops(D) are homotopic (in D) if there exists a continuous
function on the unit square

H : [0, 1]× [0, 1]→ D

such that

• H(0, t) = f(t) for all t ∈ [0, 1],

• H(1, t) = g(t) for all t ∈ [0, 1],

• H(s, 0) = H(s, 1) for all s ∈ [0, 1].
11



If such an H exists, we write f ' g or f 'H g.

Remark. In other words, H equals f when restricted to the left-hand edge of the square,
and g when restricted to the right-hand edge. In between, the restriction to each vertical
segment of the square must also be a loop.

Remark. It follows that if f 'H g then we can think of the homotopy H as specifying a
path γH in Loops(D) from f to g. At each s ∈ [0, 1], the loop γH(s) is (t 7→ H(s, t)). It is
possible to define a topology on Loops(D) such that the continuity of

H : [0, 1]× [0, 1]→ D

is equivalent to the continuity of

γH : [0, 1]→ Loops(D).

Powerful things happen when this is achieved. But please don’t worry about it too much.

Proposition 1.10. The relation ' on Loops(D) is an equivalence relation:

• f ' f

• f ' g implies g ' f

• f ' g and g ' h imply f ' h

for all f, g, h ∈ Loops(D).

Proof. See homework. �

In order to exploit this equivalence relation, we need techniques for showing that f ' g
and also techniques for showing that f 6' g. The simplest way to construct a homotopy is
to interpolate linearly between f and g. This works provided that the interpolation remains
within the domain D:

Proposition 1.11. Let D ⊆ R2 and let f, g ∈ Loops(D). Suppose that for every t ∈ [0, 1]
the line segment |[f(t), g(t)]| is contained in D. Then f ' g in D.

Proof. The function H(s, t) = (1 − s)f(t) + sg(t) is a homotopy from f to g. Indeed, it is
continuous because products and sums of continuous functions are continuous, and the three
bulleted conditions are easily verified. �

The function H in the proof is called the straight-line homotopy from f to g.

Corollary 1.12. Any two loops f, g ∈ Loops(R2) are homotopic. �

Example 1.13. Not all f, g in Loops(R2 − {0}) are homotopic. Consider:

f(t) = e2πit

g(t) = (−1 + i) + 1
10
e2πit
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The straight-line homotopy doesn’t work, because at t = 3
2
π the interval [f(t), g(t)] passes

through 0. Intuitively, it seems that there should be no way to devise a homotopy between
f and g. But how are we to prove this?

1.8. The continuous winding number.

Theorem 1.14. There exists a function Loops(R2 − {0}) → Z, expressed by the notation
f 7→ w(f, 0), such that

• if f ' g in Loops(R2 − {0}) then w(f, 0) = w(g, 0)), and

• if f = e2πidt then w(f, 0) = d.

Definition. For any point x ∈ R2 and f ∈ Loops(R2 − {x}) we set w(f, x) = w(f − x, 0).

Remark. One of the strengths of this theorem is that it can be used very effectively as a
‘black box’. The existence of a function w with these properties is a powerful mathematical
fact with many consequences. The details of the proof (and there are many proofs) are
encapsulated and kept separate from the uses of the theorem.

Solution to Example 1.13. Loop g is homotopic to the constant loop 1 by a straight-line
homotopy. Indeed, g is contained in the strict interior of the second quadrant, so the line
segments [g(t), 1] all avoid 0. It follows that

w(g, 0) = w(1, 0) = w(e2πi0t, 0) = 0.

On the other hand
w(f, 0) = w(e2πit, 0) = 1.

Since w(f, 0) 6= w(g, 0) it follows that f 6' g in R2 − {0}. �

Proof of Theorem 1.8, and therefore FTA. Seeking a contradiction, we may suppose that
p(z) = zd +

∑d−1
k=0 akz

k is a complex polynomial with no roots. Let

R = 1 + |a0|+ |a1|+ · · ·+ |ad−1|
and consider the following loops in R2 − {0}:

f(t) = e2πidt, g(t) = Rde2πidt, h(t) = p(Re2πit), k(t) = a0, `(t) = 1.

It can be shown (see homework) that f ' g ' h ' k ' ` in R2 − {0}, and therefore

d = w(f, 0) = w(g, 0) = w(h, 0) = w(k, 0) = w(`, 0) = 0.

This is a contradiction, so the assumption that p(z) has no roots must be false. �

Remark. The only use of the assumption on p is to construct the homotopy h ' k in R2−{0}.
That is where the contradiction happens. The existence of a root breaks the red “=” sign
and avoids the contradiction. (The assumption also rules out the trivial case a0 = 0.)

A powerful black box indeed. Let us now justify its use.

Proof of Theorem 1.14. Here is our strategy.
13



• (Step 1) Subdivide the interval [0, 1] and define w(f, 0) to be the discrete winding
number of the polygon obtained from f using this subdivision.

• (Step 2) Show that this definition is independent of the choice of subdivision.

• (Step 3) Show that two homotopic loops have the same winding number.

• (Step 4) Verify that w(e2πidt, 0) = d.

There is some technical input from analysis (e.g. Math 131). We use the facts that a real-
valued continuous function on a compact space is bounded and attains its bounds, and that
a continuous function from a compact metric space to another metric space is uniformly
continuous. The compact space will be the interval [0, 1] for the first two steps, and the unit
square [0, 1]× [0, 1] for the third step.

We proceed with the proof. Let f ∈ Loops(R2 − {0}).

Step 1. Since the interval [0, 1] is compact (i.e. closed and bounded):

• Let m = mint(|f(t)|), the minimum distance between the loop and 0.

• Let δ > 0 be such that |t1 − t2| < δ implies |f(t1)− f(t2)| < m.

We know that m exists and is strictly positive, since the minimum distance is attained and
f never reaches 0. Then δ exists since f is uniformly continuous.

Let T be a subdivision of the interval [0, 1]. That is, let

T = (t0, t1, . . . , tn)

where

0 = t0 < t1 < · · · < tn = 1.

For any such T , we define a 1-chain

fT =
n∑
k=1

[f(tk−1), f(tk)].

We wish to define w(f, 0) = w(fT , 0). We must confirm that the edges of fT do not cross 0.
It is useful to define the mesh-size

mesh(T ) = max
k

(|tk − tk−1|).

Proposition 1.15. If mesh(T ) < δ, then fT is a 1-chain in R2 − {0}.

Proof. For each edge [f(tk−1), f(tk)] we can argue as follows. Let rk = |f(tk) − f(tk−1)|.
Then the entire edge lies inside a disk of radius rk with center f(tk). But |f(tk)| ≥ m, and
|tk − tk−1| < δ implies that rk < m. It follows that this disk does not meet 0, and therefore
the edge does not meet 0. This is true for every edge, so |fT | ⊂ R2 − {0} as required. �
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We can now provisionally define w(f, 0) = w(fT , 0), where T is any subdivision of [0, 1]
satisfying mesh(T ) < δ. This completes Step 1.

Step 2. We show that if mesh(S),mesh(T ) < δ then w(fS, 0) = w(fT , 0).

Suppose first that S is obtained from T by adding one extra point somewhere:

T = (t0, . . . , tk−1, tk, . . . , tn),

S = (t0, . . . , tk−1, s, tk, . . . , tn).

We can compare the winding numbers directly: the difference in the formulas involves three
edges, all other terms being the same. Let us write a = f(tk−1), b = f(s), c = f(tk). Then

w(fS, 0)− w(fT , 0) = 1
2π

(θ([a, b], 0) + θ([b, c], 0)− θ([a, c], 0))

= 1
2π

(θ([a, b], 0) + θ([b, c], 0) + θ([c, a], 0))

= w([a, b] + [b, c] + [c, a], 0).

To show that this is zero, notice that |a| ≥ m and |a− b|, |a− c| < m. It follows that a, b, c,
and therefore the three edges between them, are contained in a circular disk that is disjoint
from the origin. By selecting a ray at the origin which points away from the center of this
disk, we deduce that this winding number is zero and hence w(fS, 0) = w(fT , 0).

For the general case, let S, T be two arbitrary subdivisions of mesh-size less than δ and
let U be the subdivision obtained as the union of the points in S and T . By adding points
to S one-by-one it follows that w(fS, 0) = w(fU , 0), and by adding points to T one-by-one it
follows that w(fT , 0) = w(fU , 0). Thus w(fS, 0) = w(fT , 0). This completes Step 2.

Step 3. Suppose f, g are loops that are homotopic in R2 − {0} through a map H. We will
express the difference w(f, 0)− w(g, 0) in a clever way, and show that it is zero.

The domain of H is the square [0, 1]× [0, 1]. Since this is compact:

• Let m = mint(|H(t)|) > 0, the minimum distance between the image of H and 0.

• Let δ > 0 be such that |s1 − s2| < δ and |t1 − t2| < δ together imply |H(s1, t1) −
H(s2, t2)| < m.

Now let N > 1
δ
, and consider the subdivision

T =
(
0, 1

N
, 2
N
, . . . , N−1

N
, 1
)

of the unit interval. Then

w(f, 0) = w(fT , 0), w(g, 0) = w(fT , 0).

This is because δ as chosen above is small enough to function as the δ defined in Step 1, for
both f and g.

The next step is to subdivide [0, 1]× [0, 1] into N2 equal squares of side-length 1
N

.
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Suppose the vertices of the k-th square are labelled ak, bk, ck, dk in counterclockwise order;
define a polygon

γk = [H(ak), H(bk)] + [H(bk), H(ck)] + [H(ck), H(dk)] + [H(dk), H(ak)].

By choice of δ, we know that |H(ak)| ≥ m and that each of H(bk), H(ck), H(dk) lies at
distance less than m from H(ak). Thus the entire polygon γk is contained in a disk that
does not meet the origin. We deduce

w(γk, 0) = 0

by selecting a ray at the origin that does not meet the disk. It follows that

N2∑
k=1

w(γk, 0) =
N2∑
k=1

0 = 0.

On the other hand, we also have

N2∑
k=1

w(γk, 0) = w(fT , 0)− w(gT , 0).

Indeed, splitting each term on the lhs into its constitutent four terms, we find that the
contributions of the inner edges and the left-hand and right-hand edges cancel. What is left
are the edges at the bottom (directed rightward) and the edges at the top (directed leftward).
This is precisely the rhs.

It follows that w(fT , 0)− w(gT , 0) = 0. This completes Step 3.

Step 4. To calculate w(e2πidt, 0), let N > 2d and use the subdivision

T =
(
0, 1

N
, 2
N
, . . . , N−1

N
, 1
)

to get

w(e2πidt, 0) = w(
[
e2πidt

]
T
, 0) = 1

2π

N∑
k=1

2πd
N

= d

as required. This completes Step 4.

The proof of the winding number theorem is complete. �

The next lemma summarizes an argument used in both Step 2 and Step 3 above.

Lemma 1.16 (Distant Cycle Lemma). Let a1, . . . , an ∈ R2 satisfy |a1 − ai| < |a1| for all i,
and let γ be any 1-cycle constructed using only edges of the form [ai, aj]. Then w(γ, 0) is
defined and equal to 0.

Proof. The inequalities imply that the ai are contained in a circular disk disjoint from the
origin. All possible edges of γ are contained in the same disk. Thus the winding number is
defined. It is zero because there exist rays at the origin which do not meet the disk. �
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In both steps, we showed that two winding numbers were equal by expressing their differ-
ence as a sum of winding numbers (of small triangles or quadrilaterals) that are zero by the
Distant Cycle Lemma.

Corollary 1.17. The winding number is invariant to orientation-preserving reparametriza-
tions of the loop.

Proof. Here is an ‘inside-the-black-box’ argument. Let f, g be parametrizations of the same
loop in in the same direction, and let x ∈ R2 − im(f) = R2 − im(g). Then w(f, x), w(g, x)
can be computed as discrete winding numbers of sufficiently fine polygonal approximations
of f, g. We can choose approximations that give the same polygon in R2 − {x}. �

Remark. A more general argument, which stays outside the black box, runs like this. Given
a loop f : [0, 1]→ D, consider its continuous ‘lift’

f̄ : R→ D; t+ n 7→ f(t) for all t ∈ [0, 1] and n ∈ N.

If φ : [0, 1]→ R is a continuous map satisfying φ(1) = 1 +φ(0), then f̄ ◦φ ∈ Loops(D). This
general form of reparametrization allows some temporary doubling back, as well as allowing
the basepoint of the loop to change. Then we have

w(f, x) = w(f̄ ◦ φ, x)

for any x ∈ R2 − im(f). Indeed, if we define Φ(s, t) = st + (1 − s)φ(t) then f̄ ◦ Φ is
a homotopy between f and f̄ ◦ φ. The important point is that Φ satisfies the identity
Φ(s, t) = 1 + Φ(s, t+ 1), since this guarantees that each intermediate stage in the homotopy
is a loop.

Lecture 3

1.9. The Brouwer fixed-point theorem.

Theorem 1.18. Let D be the closed unit disk in R2, and let f : D → D be continuous.
Then f has a fixed point, i.e. there exists x ∈ D such that f(x) = x.

Here are some comments on the theorem.

• We can replace D with any space topologically equivalent to D. The theorem for D
immediately implies this more general assertion.

• The disk must be closed. For the open disk, let b be any point on the boundary. Then
the function f(x) = 1

2
(x+ b) maps the open disk to itself, but has no fixed point.

• The theorem fails for the annulus. Let f be the function ‘rotate by θ’ (where θ 6= 2nπ).

• Given a map of Claremont located in Claremont, there exists a point on the map which
lies directly over the point in Claremont that it represents. This is a consequence of
Brouwer, but it is also a consequence of the (easier) contraction mapping theorem.
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• Given two copies of a rectangular piece of paper (such as a map of Claremont), fold or
crumple one of them and place it completely over the other. Then there is a point in
the folded map which lies directly over the corresponding point in the other map. This
follows from Brouwer, but not from the contraction mapping principle.

• The theorem works more generally in Rn. It is usual to prove the general theorem using
more sophisticated technology such as homology theory. There is also an elementary
combinatorial argument using ‘Sperner’s Lemma’.

• The theorem in R1 can be proved using the intermediate value theorem, Indeed, suppose
f : [−1, 1]→ [−1, 1] is continuous. Then g(x) = x−f(x) is continuous, with g(−1) ≤ 0
and g(1) ≥ 0. Therefore there exists x ∈ [−1, 1] such that g(x) = 0, and hence f(x) = x.

The 2-dimensional tool analogous to the IVT is, of course, the winding number.

Proof of the Brouwer fixed-point theorem. Suppose f : D2 → D2 is continuous and has no
fixed points. Then g(x) = x− f(x) is continuous and maps D2 → R2−{0}. One shows that

w(g(e2πit), 0) = w(g(0), 0) = 0 homework 11(i)

and w(g(e2πit), 0) = w(e2πit, 0) = 1 homework 11(ii)

which is a contradiction. �

1.10. Differentiable curves. Let f : [0, 1] → R2 − {0} be differentiable (or piecewise
differentiable). We can reinterpret

w(f, 0) = w(fT , 0) =
N∑
k=1

θ([g(tk−1), g(tk)], 0)

as an integral by taking the limit as mesh(T ) → 0. The idea is to interpret θ as ∆ arg, the
change in argument as we move along an edge. Even though arg is not well-defined globally,
its differental d arg makes sense everywhere and we can write

w(g, 0) = lim
mesh(T )→0

w(γT , 0) = lim
mesh(T )→0

[
1

2π

N∑
k=1

∆ arg[g(tk−1),g(tt)]

]
=

1

2π

∮
g

d arg .

Now we must calculate d arg. For short edges in the half-plane {x > 0}, we can use

arg(x, y) = arctan(y/x)

which leads to the equation

d arg = d arg =
1

1 + (y/x)2
d(y/x) =

1

1 + (y/x)2

x dy − y dx
x2

=
x dy − y dx
x2 + y2

.

In the other three coordinate half-plane, the alternative lifts

arg(x, y) = arctan(y/x) + π or − arctan(x/y) + π
2

or − arctan(x/y)− π
2

lead to the same expression. We reach the desired formula:

w(f, 0) =
1

2π

∮
f

x dy − y dx
x2 + y2
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This expression is independent of the parametrization of the loop by the variable t. We can
evaluate the integral as

w(f, 0) =
1

2π

∫ 1

0

x dy
dt
− y dx

dt

x2 + y2
dt

for any specific parametrization f(t) = (x(t), y(t)).

We now relate this to complex analysis. Writing z = x+ iy, we have

dz

z
=
dx+ i dy

x+ iy
=

(dx+ i dy)(x− iy)

(x+ iy)(x− iy)
=

(x dx+ y dy) + i(x dy − y dx)

x2 + y2
.

For any closed loop f we get∮
f

dz

z
=

∮
f

x dx+ y dy

x2 + y2
+ i

∮
f

x dy − y dx
x2 + y2

=

∮
f

d
[
log(

√
x2 + y2)

]
+ 2πiw(f, 0).

Since the function log
√
x2 + y2 is globally defined (away from 0), the integral of its differ-

ential is automatically zero around a closed loop. Thus we obtain a famous formula from
complex analysis:

w(f, 0) =
1

2πi

∮
f

dz

z

The more general form

w(f, a) =
1

2πi

∮
f

dz

z − a
follows immediately by translation.
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2. Homology

We now recast our ideas in the language of linear algebra. Soon this will lead to the notion
of homology.

2.0. Introduction. Our proof of FTA included, and depended on, a proof of the following
fact:

Proposition 2.1. Let p : C → C be a continuous function. If w(p(Re2πit), 0) is (defined
and) nonzero then p has a root inside the circle of radius R. �

If p is a polynomial, or more generally a complex analytic function, then there is a stronger
theorem that asserts that w(p(Re2πit)) (when defined) counts the roots inside the circle of
radius R. Repeated roots are counted with multiplicity. Moreover, the curve does not have
to be a circle.

Theorem 2.2. Let p : C → C be a non-constant complex analytic function. Let Λ ⊂ C
denote its set of roots, and let mλ denote the multiplicity of λ ∈ Λ. Then for any continuous
loop f ∈ Loops(C− Λ) we have

w(pf, 0) =
∑
λ∈Λ

w(f, λ)mλ.

Implicit in this description is the fact that the set of roots of a complex analytic function
is discrete, which implies that only finitely many of them are enclosed (with nonzero winding
number) by f ; so the sum on the right-hand side is finite. The multiplicity of a root λ is the
exponent of the smallest nonzero term in the Taylor series for q(z) := p(λ+ z).

The proof works like this:

• Show that the result is true whenever f is a sufficiently small circle around a root. In
other words, show that w(p(λ + re2πit), 0) = mλ for sufficiently small r. This is done
exactly as in homework question 9(iv).

• Show that a general f is ‘equivalent’ to a ‘sum’ of small loops around roots. The
number of small loops needed around λ is given by w(f, λ). The equivalence ‘respects’
winding numbers, so we can calculate w(pf, 0) as a linear combination of the terms
w(p(λ+ re2πit), 0) = mλ.

A good way to remove all the scare quotes ‘’ and make the proof rigorous is to invent
homology theory. This is our next task.

2.1. Chains, cycles, boundaries. Let U ⊆ R2. Often U is an open set, but not always.
We wish to study the topological properties of U in terms of linear algebra. To this end, we
will define three vector spaces C0(U), C1(U), C2(U) and two linear maps ∂0 and ∂1. These
are organised as follows:

C0(U)
∂0←− C1(U)

∂1←− C2(U)

We frequently write ∂ as shorthand for ∂0 or ∂1.
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Let F be any field.

Definition 2.3. Let C0 = C0(U) = C0(U ;F) to be the vector space over F with

• a generator [a] for each a ∈ U ;

• no linear relations between the generators.

A typical vector looks like

α = λ1[a1] + · · ·+ λn[an]

and is called a 0-chain in U .

Definition 2.4. Let C1 = C1(U) = C1(U ;F) to be the vector space over F with

• a generator [a, b] for every a, b distinct with |[a, b]| ⊆ U ;

• the relation [a, b] = −[b, a] for all such a, b.

A typical vector looks like

α = λ1[a1, b1] + · · ·+ λn[an, bn]

and is called a 1-chain in U .

Example 2.5. In the following domain

U

b

a

c

d

e

the 1-chains

α = [a, b] + [b, c] + [c, d]

β = [c, e] + [e, d] + [d, c]

are defined over any field. The edge [a, d] does not belong to C1(U). We can add:

α + β = ([a, b] + [b, c] + [c, d]) + ([c, e] + [e, d] + [d, c])

= [a, b] + [b, c] + [c, e] + [e, d].

If we are working over R, then

γ = 7[c, e]− π[b, a]

is a valid 1-chain.

The next step is to define the linear map ∂0.
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Definition 2.6. The boundary map is the map

∂ = ∂0 : C1(U)→ C0(U)

defined on each generator by

∂[a, b] = [b]− [a]

and extended by linearity to the whole vector space. This is consistent with the relations
[a, b] = −[b, a] because

∂ ([a, b]) = [b]− [a],

∂ (−[b, a]) = −∂ ([b, a]) = − ([a]− [b]) = [b]− [a].

Example 2.7. (Picture of a path abcde in a region.)

∂ ([a, b] + [b, c] + [c, d] + [d, e]) = [b]− [a] + [c]− [b] + [d]− [c] + [e]− [d]

= [b]− [a] + [c]− [b] + [d]− [c] + [e]− [d]

= [e]− [a]

Example 2.8. (Picture of a pentagram.)

∂ ([a, c] + [c, e] + [e, b] + [b, d] + [d, a]) = 0.

In linear algebra we learned that there are important vector spaces associated to a linear
map T : V → W . The most important are the kernel

ker(T ) = {v ∈ V | T (v) = 0}

which is a subspace of V , and the image

im(T ) = {w ∈ W | ∃v ∈ V, T (v) = w}

which is a subspace of W . What do the image and kernel of δ tell us about the domain U?

2.2. The kernel of ∂0. The following proposition depends on a property of a field known
as its ‘characteristic’. Any field that contains a full copy of the integers is said to have
characteristic 0. Examples are Q, R and C. Otherwise there is some smallest positive
integer p which is equal to zero in the field. This is always a prime number, and we say that
the field has characteristic p. For example, the field of two elements F2 has characteristic 2,
since 2 = 1 + 1 = 0.

Proposition 2.9. Let γ =
∑n

k=1[ak, bk] be a sum of edges.

• if char(F) = 0, then ∂γ = 0 if and only if γ is an oriented 1-cycle.

• if char(F) = 2, then ∂γ = 0 if and only if γ̃ =
∑n

k=1 {ak, bk} is an unoriented 1-cycle.

Note. A general 1-chain is a linear combination of edges γ =
∑

k λk[ak, bk]. This proposition
considers the special case where all the coefficients are 1.
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Proof. Let p1, p2, . . . , pm be a list of the distinct points that occur among the ak and bk.
Then we can write

∂γ = λ1[p1] + λ2[p2] + · · ·+ λm[pm]

where

λj = (the number of times pj occurs among the bk)

− (the number of times pj occurs among the ak) .

Then ∂γ = 0 if and only if each coefficient λj = 0.

• If char(F) = 0, this happens precisely when each pj occurs equally often in the (ak) as
in (bk); in other words, when γ is an oriented 1-cycle.

• If char(F) = 2, this happens precisely when each pj occurs an even number of times in
the (ak), (bk) combined; in other words, when γ̃ is an unoriented 1-cycle.

This completes the proof. �

We now give a very general definition of a cycle.

Definition. Let U ⊆ R2 and let F be a field. We define the space of 1-cycles

Z1(U ;F) = ker (∂0 : C1(U ;F)→ C0(U ;F)) ,

a subspace of C1(U ;F). An element of Z1(U ;F) is called a 1-cycle (in U , over F).

Remark. When we are working over R, the space of 1-cycles includes much more than just
the ‘oriented 1-cycles’ that we defined earlier. This is because the edges have arbitrary real
coefficients.

Remark. In contrast, when we are working over the field of two elements the space of 1-cycles
Z1(U ;F2) is precisely equivalent to the set of unoriented 1-cycles.

2.3. The image of ∂0. Can we find a 1-chain γ solving the equation

(*) α = ∂γ

when α =
∑

k λk[pk] is a given 0-chain?

Proposition 2.10. A necessary condition that a solution to (*) exists is that
∑

k λk = 0.

Definition. Let us name the function that takes a 0-chain α and returns the sum of its
coefficients: the mass function is the unique linear map

µ : C0(U ;F)→ F
that satisfies µ([p]) = 1 for each p ∈ U . (This works because the vectors [p] form a basis.)

Proof of Proposition 2.10. For every generator [a, b] ∈ C1 we have

µ∂([a, b]) = µ([b]− [a]) = µ([b])− µ([a]) = 1− 1 = 0.

Therefore µ∂ is the zero map; and α = ∂β implies µ(α) = 0. �
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We now consider the simplest case of (*) that satisfies this necessary condition.

Theorem 2.11. Let U ⊆ R2 and let a, b ∈ U . The equation

(†) ∂γ = [b]− [a]

has a solution γ if and only if there exists a polygonal path in U from a to b.

Proof. (⇐) If P (a0, a1, . . . , an−1, an) is a polygonal path in U with a0 = a and an = b, then

γ = [a0, a1] + · · ·+ [an−1, an]

belongs to C1(U) and ∂γ = [b]− [a].

(⇒) Suppose [b]− [a] = ∂γ for some γ. We must show that there is a path from a to b. To
this end consider the function on U defined by

f(p) =

{
1 if there exists a polygonal path in U from a to p

0 otherwise

Note that f(a) = 0, by considering the trivial path P (a) of length zero. From f we construct
a linear map φ : C0(U ;F)→ F by defining

φ([p]) = f(p)

for every p ∈ U , and extending linearly to the whole vector space.

Claim. The composite map φ∂ : C1(U ;F)→ F is zero.

Proof. Let [p, q] denote any edge in C1(U ;F). Then f(p) = f(q), since the edge [p, q] can be
used to extend a path from a to p to a path from a to q, and vice versa. Thus

φ∂([p, q]) = φ([q]− [p]) = φ([q])− φ([p]) = f(q)− f(p) = 0.

Since C1 is generated (as a vector space) by its edges [p, q], it follows that φ∂ = 0. �

We therefore have
0 = φ∂γ = φ([b]− [a]) = f(b)− f(a)

so f(b) = f(a) = 1 which means that there is a polygonal path from a to b. �

Lecture 4

Definition. Consider the equivalence relation on U ⊆ R2

a ∼ b ⇔ ∃ polygonal path from a to b in U

An equivalence class of this relation is called a polygonal-path component or PPC. If U
has exactly one PPC, then it is PP-connected.

Remark. Each PPC is connected in the traditional sense, so PP-connected implies connected.
Conversely, if U ⊆ R2 is an open set then each PPC is also open (because each point is
connected by a segment to each point in a small neighbourhood). Thus the PPCs comprise
a partition of U into nonempty open connected sets. As such, they are precisely the connected
components of U . Thus, connected implies PP-connected for open sets.
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Example. If U is an arc of a circle, then it has uncountably many PPCs.

We now give a full description of im(∂0). Let α =
∑

k λk[pk] be a 0-chain in an open set U .
In order to solve α = ∂γ, we have seen that it is necessary for the ‘mass’ to be zero:

µ(α) =
∑
k

λk = 0

On the other hand, we have seen that ∂γ cannot be used to ‘transfer’ mass between different
connected components.

Following this idea, let {Uκ | κ ∈ K} be the set of PPCs of U . For each Uκ we define a
map µκ : C0(U ;F)→ F by setting

µκ([p]) =

{
1 if p ∈ Uκ
0 otherwise

and extending linearly to the whole vector space. This gives the ‘mass on Uκ’ of a 0-chain.

Theorem 2.12. Let U ⊆ R2 be open. A 0-chain α ∈ C0(U) belongs to im(∂0) if and only if
µκ(α) = 0 for every polygonal-path component Uκ of U .

Proof. (Homework 17.) �

Definition. Write
B0(U ;F) = im (∂0 : C1(U ;F)→ C0(U ;F))

Then B0(U ;F) ≤ C0(U ;F), and is known as the space of 0-boundaries (in U , over F).

2.4. 2-chains and their boundaries. We now define the space of 2-chains and the bound-
ary map from 2-chains to 1-chains.

An oriented triangle is a triple [a, b, c] where a, b, c ∈ R2 are distinct. If we wish to think
of this as a subset of the plane, we write:

|[a, b, c]| = the set of points in the filled-in triangle

= {λa+ µb+ νc | λ+ µ+ ν = 1, λ ≥ 0, µ ≥ 0, ν ≥ 0}
= {convex linear combinations of a, b, c}

In pictures, we usually draw the triangle with a curly arrow to indicate the cyclic order
(a, b, c) of the vertices.

Remark. We allow a, b, c to be collinear, but they must be distinct.

Definition. Let C2 = C2(U) = C2(U ;F) to be the vector space over F with

• a generator [a, b, c] for every a, b, c distinct with |[a, b, c]| ⊆ U ;

• a relation [a, b, c] = [b, c, a] for all such a, b, c;

• a relation [a, b, c] = −[b, a, c] for all such a, b, c.
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A typical vector looks like

σ = λ1[a1, b1, c1] + · · ·+ λn[an, bn, cn]

and is called a 2-chain in U .

Remark. If we apply the two relations repeatedly, we find that the six permutations of a
triangle [a, b, c] are related as follows

[a, b, c] = [b, c, a] = [c, a, b] = −[a, c, b] = −[b, a, c] = −[c, b, a]

and therefore belong to the same 1-dimensional subspace.

It is useful to define the support of σ =
∑

k λk[ak, bk, ck] to be the set

|σ| =
⋃
k

|[ak, bk, ck]|

of all points contained in the triangles of σ.

Example 2.13. In the following domain [a, b, d] ∈ C2(U) whereas [a, b, c] 6∈ C2(U):

a

b

c

d

We now define the boundary map ∂1 : C2 → C1. There are three steps.

• Define ∂ on the generators of C2, by the formula:

∂[a, b, c] = [b, c]− [a, c] + [a, b]

• Extend linearly to the whole vector space C2:

∂

(∑
k

λk[ak, bk, ck]

)
=
∑
k

λk∂[ak, bk, ck]

• Verify that the definition is consistent with the prescribed relations:

∂[a, b, c] = [b, c]− [a, c] + [a, b] = [c, a]− [b, a] + [b, c] = ∂[b, c, a]

= −[a, c] + [b, c]− [b, a] = −∂[b, a, c]

This completes the definition of ∂ = ∂1 from 2-chains to 1-chains. We now give names to
the image and kernel of this boundary map:

B1(U) = im (∂1 : C2(U)→ C1(U)) = “the space of 1-boundaries” ≤ C1(U)

Z2(U) = ker (∂1 : C2(U)→ C1(U)) = “the space of 2-cycles” ≤ C2(U)
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The following relationship is of central importance in homology theory:

Proposition 2.14. B1(U) ≤ Z1(U).

Proof. The assertion can be expressed in several ways, easily seen to be equivalent:

B1(U) ≤ Z1(U)⇔ every 1-boundary is a 1-cycle

⇔ if γ ∈ im(∂1) then γ ∈ ker(∂0)

⇔ if γ = ∂1σ for some σ ∈ C2(U), then ∂0γ = 0.

⇔ if σ ∈ C2(U), then ∂0∂1σ = 0.

⇔ ∂0∂1 = 0

To prove that ∂0∂1 = 0 it is enough to show that this linear map sends every generator of
C2 to zero. This can be checked immediately:

∂0∂1[a, b, c] = ∂0 ([b, c]− [a, c] + [a, b]) = [c]− [b]− [c] + [a] + [b]− [a] = 0 �

We end up with the following configuration of vector spaces, with the arrows indicating
the respective boundary maps:

Z1

C1

B2

C2

Z2

B0

Z0

C0

B1

We have not yet defined Z0 or B2; these are respectively the kernel of a map ∂−1 and the image
of a map ∂2. It turns out that Z0 = C0 and B2 = Z2, as suggested by the cross-hatching.

2.5. The image of ∂1. We consider the equation:

γ = ∂1σ

When this holds we say that γ bounds σ, or that σ spans γ.

Question. For a given γ ∈ Z1(U) does there exist σ ∈ C2(U) which spans it?

Example 2.15. In the domain on the left, the 1-cycle γ = [a, b] + [b, c] + [c, d] + [d, a], is
spanned by the 2-chain σ = [a, b, c] + [a, c, d].

a

b

c

d

a

b

c

d

a

b

c

d
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The domain in the middle doesn’t admit σ as a 2-chain, but γ is still a boundary: it is
spanned by [a, b, d] + [b, c, d] for instance. It turns out that the smallest domain in which γ
bounds a 2-chain is the domain on the right. See homework 17 and Theorem 2.18.

Example 2.16. Let γ = [a, b] + [b, c] + [c, d] + [d, e] + [e, a] in the two domains shown here.

a

b

c d

e

a

b

c d

e

Then γ bounds a 2-chain in the domain on the left, for instance σ = [a, b, c]+[a, c, d]+[a, d, e].
For the domain on the right, there is no obvious 2-chain that spans γ. Indeed, it seems that
no such 2-chain should exist. But how can we prove it?

The trick: In order to show that γ = ∂1σ has no solution, we find a linear map T such that
T (γ) 6= 0 but where T∂1 is the zero map. This prevents the existence of σ.

The linear map in this case is the winding number about some point inside the white
rectangle. Then γ has winding number 1 about that point, but the boundaries of the
individual triangles of σ have winding number 0. So when we add them up, we get the
contradiction 1 = 0.

Let’s do this a little more carefully. We have defined the winding number only for 1-cycles
of the form

∑
k[ak, bk] rather than the more general form

∑
k λk[ak, bk]. So let’s pause to

broaden the definition of the winding number.

Definition. Let U ( R2, and let x ∈ R2 − U . Define a linear map wx : C1(U ;R) → R by
setting

wx([a, b]) = 1
2π
θ([a, b], x)

for all generators [a, b], and extending linearly to the whole space C1(U ;R).

It is immediate that if a sum of edges γ =
∑

k[ak, bk] is a 1-cycle, then wx(γ) = w(γ, x).
So we recover the winding number for those 1-cycles and, better still, wx is defined on all
1-chains.

Remark. We can no longer say that wx of a 1-cycle is necessarily an integer: scalar multi-
plication means that we can get any real number (unless wx is identically zero). It is only
guaranteed to be an integer when γ is a linear combination of edges with integer coefficients.

Proposition 2.17. Let U ( R2 and let x ∈ R2 − U . Then wx ∂1 is zero on C2(U ;R).

Proof. Consider a generator [a, b, c] ∈ C2(U ;R). Thus x 6∈ |[a, b, c]|. We have

wx∂1([a, b, c]) = wx([b, c]− [a, c] + [a, b]) = w([b, c]− [a, c] + [a, b]) = 0
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by considering a ray from x pointing away from the triangle. A linear map which is zero for
every generator must be the zero map, so wx ∂1 = 0. �

Recall that |σ| denotes the support of σ, that is, the set of all points contained in the
triangles of σ.

Theorem 2.18 (coverage theorem). Suppose γ = ∂1σ, where γ ∈ Z1(R2) and σ ∈ C2(R2).
Then |σ| contains all points of |γ| as well as all points x ∈ R2 − |γ| for which wx(γ) 6= 0.

For instance, in Example 2.15, any 2-chain spanning γ must cover the two small triangles.

Proof. Let U = |σ|. Then γ = ∂1σ is a 1-cycle in U , so |γ| ⊆ |σ|. By Proposition 2.17,
x 6∈ |σ| implies that wx(γ) = wx ∂1(σ) = 0. Thus wx(γ) 6= 0 implies x ∈ |σ|. �

2.6. Sensor network coverage. Consider a 2-dimensional domain containing a large num-
ber of robotic sensors. The sensors are to broadcast or receive information in a small radius
around them. Their capacities are limited. Fix R > 0. We assume:

• each sensor has a unique identifier;

• each sensor can identify all sensors which lie within distance R of it;

• this information can be relayed back to a coordinating computer.

We do not assume that the sensors can identify their locations precisely. There is no GPS.
We may sometimes be able to deliberately position some sensors in known locations.

Radial coverage. A point x ∈ U is r-covered if it is contained in a disk of radius
R/
√

3 centered on one of the sensors.

Vietoris–Rips coverage. A point x ∈ U is VR-covered if it is contained in a
triangle spanned by three sensors that lie pairwise within distance R of each other.

It is a theorem that VR-coverage implies r-coverage. This follows from the trigonometric
result that if the three sides of a triangle have length at most R then the three disks of radius
R/
√

3 centered at the vertices cover the entire triangle. (The ratio 1/
√

3 cannot be made
smaller: consider an equilateral triangle.)

Controlled boundary coverage test. Let U be a domain bounded by a simple closed
polygon. Place sensors s1, s2, . . . , sn = s0 at all the corners of the polygon and along the
edges so that each edge [sk−1, sk] has length at most R. Other sensors are distributed within
the domain. Consider the finite dimensional vector spaces

Ĉ1 = subspace of C1(R2) generated by edges between sensors separated by at most R,

Ĉ2 = subspace of C2(R2) generated by triangles between sensors separated by at most R.
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and the linear map ∂̂1 : Ĉ2 → Ĉ1 defined as the restriction of ∂1. If the ‘fence’ cycle

γ =
n∑
k=1

[sk−1, sk]

lies in the image of ∂̂1 then return yes otherwise return no.

Theorem 2.18 implies that yes guarantees that all of U is VR-covered (and therefore also
r-covered). It is also true that no implies that some point of U is not VR-covered; but the
only proof I know is rather complicated.

2.7. Homology and Betti numbers. Let U ⊆ R2 be open. We will define 2 vector spaces

H0(U), H1(U)

called the homology of U , and two integers

b0(U) = dim(H0(U))

b1(U) = dim(H1(U))

called the Betti numbers of U . These will tell us about the topology of U . In fact, we
eventually see that

b0(U) = # connected components of U

and

b1(U) = # ‘holes’ in U

= # bounded components of R2 − U

(at least, in certain special cases).

Definition. Consider the sequence of vector spaces and linear maps

0 C0(U)
∂−1oo C1(U)

∂0oo C2(U)
∂1oo

(with an extra boundary map, zero, appended at the left). Then

H0(U) =
ker(∂−1)

im(∂0)
=

C0(U)

B0(U)

H1(U) =
ker(∂0)

im(∂1)
=

Z1(U)

B1(U)

The definition is a special case of a very general construction. A chain complex is a
sequence of vector spaces and linear maps arranged as follows:

0 C0(U)
∂−1oo C1(U)

∂0oo C2(U)
∂1oo C2(U)

∂2oo . . .
∂3oo

such that ∂k−1∂k = 0 for every k. This last condition implies that Bk = im(∂k) is a subspace
of Zk = ker(∂k−1). We define the k-th homology of the chain complex to be Hk = Zk/Bk.
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Quotient vector spaces. Let V be a vector space. Any subspace U ≤ V gives rise to an
equivalence relation

v1 ∼ v2 ⇔ v2 − v1 ∈ U
on V . The set of equivalence classes is itself a vector space, on the understanding that

0 = [0], λ[v1] = [λv1], [v1] + [v2] = [v1 + v2].

This is called the quotient vector space (of V by U) and is written V/U . The linear map
V → V/U defined by v 7→ [v] is called the canonical projection.

Example. Let C∞ denote the vector space of smooth real-valued functions of a real variable.
The differentiation operator

Df =
df

dx

is a linear map D : C∞ → C∞, but indefinite integration

If =

∫
f(x) dx

cannot be described that way, because of the ambiguity of the ‘+C’. Consider the subspace
R ≤ C∞ of constant functions. Since any two antiderivatives of f differ by a constant, we
can instead think of indefinite integration as a linear map I : C∞ → C∞/R.

In homology theory, it is useful to express statements about V/U in terms of V and U
directly. For example, let v1, . . . , vn ∈ V and let x ∈ V .

• The statement

[x] ∈ span([v1], . . . , [vn])

is equivalent to

x = λ1v1 + · · ·+ λnvn + u for some λ1, . . . , λn ∈ F and u ∈ U.

• The statement

[v1], . . . , [vn] are linearly independent

is equivalent to

if λ1v1 + · · ·+ λnvn ∈ U then every λk = 0.

Lecture 5

Definition. We say that two k-cycles are homologous
⇔ they represent the same element of Hk = Zk/Bk

⇔ their difference is a boundary.
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Repeated vertices. Henceforth, we will allow repeated vertices in the edges and
triangles of our chain spaces. Mostly this makes no difference to the theory. Indeed

[a, a] = −[a, a] ⇒ 2[a, a] = 0 ⇒ [a, a] = 0

and similarly

[a, a, b] = −[a, a, b] ⇒ 2[a, a, b] = 0 ⇒ [a, a, b] = 0

as long as the characteristic of the field is not equal to 2. If we are working over F2

or some other field that contains F2, then [a, a] 6= 0. We can agree to live with that.
It turns out not to affect the homology of our spaces. Meanwhile, we no longer have
to carefully avoid these degenerate edges and triangles in our arguments.

We are now in a position to calculate the homology of the plane.

Theorem 2.19. The homology of the plane is given by

H0(R2) ∼= F, in other words b0(R2) = 1;

H1(R2) = 0, in other words b1(R2) = 0.

Remark. It is clear that b0 ≥ 1, because not every 0-chain is equal to a boundary. For
instance, [0] is not a boundary because µ([0]) = 1 and µ∂0 = 0, so we cannot write [0] = ∂0γ.

Proof. The two statements can be interpreted as follows.

• b0 ≤ 1 ⇔ Every 0-chain α is homologous to some λ[0], where λ ∈ F is a scalar.

• b1 = 0 ⇔ Every 1-cycle γ is bf null-homologous, i.e. γ = ∂σ, where σ ∈ C2.

For the first statement, given α =
∑
λk[ak] we set γ =

∑
λk[0, ak]. Then

∂γ = α− µ(α)[0]

so α is homologous to λ[0] with λ = µ(α). For the second statement, given a 1-cycle
γ =

∑
λk[ak, bk] we set σ = [0, ak, bk]. Then

∂σ = γ

because ∂γ = 0 implies that the terms arising from [0, ak], [0, bk] in ∂σ all cancel out.
Specifically, the coefficient of a particular [0, p] in ∂σ is given by computing

(sum of the λk for which ak = p)− (sum of the λk for which bk = p)

and this is zero for every p because ∂γ = 0. �

What properties of the plane did we use? We made use of [0]. For every [a] occurring in
a 0-chain, we made use of [0, a]. And for every [a, b] occurring in a 1-cycle, we made use of
[0, a, b]. This gives an immediate generalisation.

Definition. We say that U ⊆ R2 is star-shaped if there exists a point x ∈ U such that if
a ∈ U then |[x, a]| ⊆ U . To specify x, we say that U is a star on x.

Theorem 2.20. Let U ⊆ R2 be star-shaped. Then b0(U) = 1 and b1(U) = 0. �
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2.8. Chain homotopy. Let U ⊆ R2 be star-shaped about a point x. The proof that
b0(U) = 1 and b1(U) = 0 is based on the idea that all chains can be moved to x. We now
give a more streamlined description of this proof.

Consider the following diagram of vector spaces and linear maps, where the vertical arrows
represent identity maps:

F

��

K

!!

C0(U)
µoo

��

K

$$

C1(U)
∂oo

��

K

$$

C2(U)
∂oo

��
F C0(U)

µoo C1(U)
∂oo C2(U)

∂oo

The maps K are defined in the usual way, by specifying their values on generators:

K : F→ C0 is defined by K(1) = [x]

K : C0 → C1 is defined by K([a]) = [x, a]

K : C1 → C2 is defined by K([a, b]) = [x, a, b]

The reason for doing this is the next result.

Proposition 2.21. We have the identities:

Kµ+ ∂K = 1 on C0(U)

K∂ + ∂K = 1 on C1(U)

The first identity implies that b0(U) ≤ 1, and the second identity implies that b1(U) = 0.

Proof. It is enough to verify the first identity on generators [a] ∈ C0(U). We have

Kµ[a] = K(1) = [x]

∂K[a] = ∂[x, a] = [a]− [x]

so (Kµ+∂K)[a] = [a] as required. It follows that any 0-chain α is homologous to a multiple
of [x], because

α = Kµα + ∂Kα = (µα)[x] + boundary.

Therefore H0 is at most 1-dimensional; that is to say b0 ≤ 1.

(To complete the proof that b0 = 1, recall that [x] is not a boundary since µ∂ = 0 and µ[x] 6= 0.)

It is enough to verify the second identity on generators [a, b] ∈ C1(U). We have

K∂[a, b] = K([b]− [a]) = [x, b]− [x, a]

∂K[a, b] = ∂[x, a, b] = [a, b]− [x, b] + [x, a]

so (Kµ+ ∂K)[a, b] = [a, b] as required. It follows that any 1-cycle γ is a 1-boundary: Indeed

γ = K∂γ + ∂Kγ = 0 + ∂Kγ = boundary

using ∂γ = 0. Therefore Z1 = B1 and so b1 = 0. �

Remark. The collection of linear maps K plays the role in algebra that a homotopy plays in
topology. Such a collection is known as a chain homotopy.
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2.9. Several PP-components. We generalise b0(R2) = 1 as follows.

Theorem 2.22. Let U ⊆ R2 be a subset of the plane with N polygonal-path components
U1, . . . , UN . Then b0(U) = N .

Proof. We will construct a linear map from H0(U)→ FN and show that it is both surjective
and injective, and therefore an isomorphism.

Step 1: constructing the map. For each connected component Uk, let µk : C0 → F denote
the mass function for that component. Since µk∂0 = 0, it follows that µk is zero on the
space of boundaries B0. Therefore we can interpret µk as a linear map on the quotient space
H0 = C0/B0.

C0(U)
µk //

��

F

H0(U)

µk

==

Specifically, if α, α′ ∈ C0 are homologous then

µk(α) = µk(α
′ + ∂γ) = µk(α

′) + µk∂γ = µk(α
′)

so the value of µk depends only on the equivalence class [α] = [α′] rather than on the specific
0-chain α, α′ within the equivalence class.

Let µ̄ denote the vector:

µ̄ =

 µ1
...
µN


Then µ̄ is a linear map H0(U)→ FN .

Step 2: surjectivity. Let ak ∈ Uk. Then µ̄([ak]) is equal to the standard basis vector ek
in FN . Since im(µ̄) contains every standard basis vector, it follows that µ̄ is onto.

Step 3: injectivity. This is the assertion that µ̄([α]) = 0 implies that [α] = 0. In other
words, if the mass of a 0-chain α is zero on every component, then α is a boundary. This is
homework question 17.

It follows that µ̄ is an isomorphism between H0(U) and FN . �

2.10. The punctured plane. We finish this chapter by calculating the homology of a
punctured plane.

Theorem 2.23. Let p1, . . . , pM ∈ R2 be distinct and let U = R2 − {p1, . . . , pM}. Then

H1(U) ∼= FM .

(We already know that H0(U) ∼= F, because U is PP-connected.)
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Remark. In some sense the result is overdetermined: there are many ways to prove it. It’s
important not to ascribe too much importance to the details of any specific proof. Here we
will use a local-to-global argument: the result is verified locally (Lemma 2.26) and extended
to a global theorem.

Some notation will be helpful. Let Dp,r denote the closed disk with center p and radius r,
and let D∗p,r = Dp,r − {p} be the punctured closed disk. We write D = D0,1 and D∗ = D∗0,1.

Within the unit disk we have the triangle 1-cycle ∆ = ∆0,1 = [1, ω]+[ω, ω2]+[ω2, 1] where
ω = e2πi/3. This is called E(3, 1) in various homework questions. More generally we set

∆p,r = [p+ r, p+ rω] + [p+ rω, p+ rω2] + [p+ rω2, p+ r].

This 1-cycle will serve as our ‘standard reference’ generator for H1(D∗p,r).

Lemma 2.24. There is a linear map wF(−, 0) : H1(R2 − {0})→ F with wF(∆, 0) = 1.

Proof. See homework 22. We already know this for F = R or F2. �

Corollary 2.25. By translation we define wF(−, p) about any point p ∈ R2; then wF(∆p,r, p) =
wF(∆0,r, 0) = wF(∆, 0) = 1, since ∆0,r is homologous to ∆ in R2 − {0}.

Lemma 2.26. Every 1-cycle in the punctured unit disk D∗ (over F) is homologous to a
scalar multiple of the triangle 1-cycle ∆.

(This is scalar multiplication in the vector space Z1(D∗), not geometric rescaling.)

Proof. See homework 23. Every cycle can be pushed to the boundary of the disk so that its
edges are chords, and the chords can be assumed to connect adjacent vertices around the
circle. Each such chord must occur with the same coefficient, so the cycle is a multiple of
a polygon winding once around the boundary. Any two such polygons are homologous, and
in particular every such polygon is homologous to E(3, 1). �

Corollary 2.27. Any 1-cycle in the punctured closed disk D∗p,r is homologous to ∆p,r. �

Proof of Theorem 2.23. We mimic the proof of Theorem 2.22. Let (rk | 1 ≤ k ≤ M) be
positive real numbers chosen so that the closed disks Dpk,rk are disjoint.

Step 1: constructing the map. Let wk = wF(−, p) denote the winding number about pk,
interpreted as a linear map H1(U)→ F. If we write

w̄ =

 w1
...

wM


then w̄ is a map H1(U)→ FM .

35



Step 2: surjectivity. For 0 < ε ≤ min(rk), we have w̄(∆p,ε) = ek, the standard basis vector
in FM . Since im(w̄) contains every standard basis vector it follows that w̄ is onto.

Step 3: injectivity. We must show that if γ is a 1-cycle in U whose winding number is zero
about each pk, then γ is a boundary in U . In fact, we will show that for any γ ∈ Z1(U) we
have

γ =
∑
k

λk∆pk,rk + (boundary in U)

in U . By applying w̄ to both sides it follows that λk = wk(γ) so the desired result follows as
a special case.

Let γ ∈ Z1(U). Since H1(R2) = 0 we have that γ = ∂σ for some σ ∈ C2(R2). What we
must do is modify σ to avoid the points pk. First we make the edges and triangles small.
Define linear maps

S : C1(U)→ C1(U) by [a, b] 7→ [a, 1
2
(a+ b)] + [1

2
(a+ b), b],

K : C1(U)→ C2(U) by [a, b] 7→ [a, 1
2
(a+ b), b].

Then ∂K = S − 1 on C1(U), so we have

Sγ = γ + (boundary in U).

Furthermore, define

S : C2(R2)→ C2(R2) by [a, b, c] 7→ [a, n,m] + [b, l, n] + [c,m, l] + [l,m, n]

where l = 1
2
(b+ c), m = 1

2
(c+ a), n = 1

2
(a+ b). Then ∂S = S∂ on C2(R2), so

Sγ = S∂σ = ∂Sσ.

Iterating n times, we get a 1-cycle

Snγ = γ + (boundary in U)

with Snγ = ∂Snσ in R2.

Remark. We can think of the maps S as a ‘splitting’ or ‘subdivision’ operation on chains.
This particular operation doesn’t generalize well to higher-dimensional chains.

By construction, each of the four triangles in S[a, b, c] has half the diameter of [a, b, c].
Let R be the maximum diameter of the triangles in γ. By choosing n ≥ log2(R/min(rk)), it
follows that each triangle in Snσ has diameter at most min(rk).

Let τ be the 2-chain obtained from Snσ by removing terms coming from triangles that
meet any of the pk. Specifically we can write

Snσ = ρ1 + ρ2 + · · ·+ ρM + τ

where none of the triangles of τ meet any pk, and all of the triangles of ρk meet pk. Since
these latter triangles have diameter at most min(rk) it follows that ρk ∈ C2(∆pk,rk) for all k.

Lemma 2.28. Each ∂ρk is a 1-cycle in its respective punctured disk D∗pk,rk .
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Proof. The 1-cycle in question

∂ρk = ∂Snσ − ∂τ −
∑
j 6=k

∂ρj = Snγ − ∂τ −
∑
j 6=k

∂ρj

is contained in R2−{pk} (by considering the right-hand side) and also in Dpk,rk (by consid-
ering the left-hand side). Thus every edge is contained in D∗pk,rk . �

Note. Despite appearances, it does not follow that ∂ρk ∈ B1(D∗pk,rk). For that, it would need to be the

boundary of a 2-chain in the punctured disk; whereas ρk meets the puncture and is not such a 2-chain (unless

it happens to be zero).

Finally, by Lemma 2.26, each ∂ρk is homologous to some scalar multiple of ∆pk,rk in its
punctured disk and therefore in U . We have

γ = Snγ + (boundary in U)

= ∂Snσ + (boundary in U)

= ∂ρ1 + · · ·+ ∂ρM + ∂τ + (boundary in U)

= ∂ρ1 + · · ·+ ∂ρM + (boundary in U)

= λ1∆p1,r1 + · · ·+ λM∆pM ,rM + (boundary in U)

as required. �

Corollary. Using Theorem 2.23 and the explicit description of the isomorphism map w̄,
it is now not too difficult (homework 24) to establish the formula

w(pf, 0) =
∑
λ∈Λ

w(f, λ)mλ

for a complex polynomial p and a continuous loop f that avoids its roots (Theorem 2.2).
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Lecture 6

3. Categories

3.1. Definition. A category C is specified by the following data:

• a class C0 = Obj(C), the objects of the category;

• a class C1 = Arr(C) = Mor(C), the arrows or morphisms of the category.

Each arrow has a source (domain) and a target (codomain) in C0. If x = source(f) and
y = target(f) then we may draw a picture such as this:

y x
foo

We write C(x, y) or MorC(x, y) or Mor(x, y) to denote the set of arrows x→ y.

Note. While C0 is permitted to be a proper class, each C0(x, y) is required to be a set.

• There is a composition operation ◦ : C(x, y)×C(y, z)→ C(x, z).

z y
goo x

foo

gf

ff

• Composition is associative: (hg)f = h(gf) when either side is defined.

•
h

��

•gfoo

f��
• •

g
__

hg
oo

• Every object x ∈ C0 has an element 1x ∈ C(x, x) which is an identity in the sense that
f = f1x whenever source(f) = x, and g = 1xg whenever target(f) = x.

• x
foo x

1xoo

f

gg x x
1xoo •goo

g

gg

3.2. Concrete categories. A concrete category takes the following form:

• object = set with additional structure

• arrow = function ‘compatible’ with the structure

• composition = composition of functions

• identity = identity function

Here are several examples.
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category object arrow

Set set function
Vect vector space linear map
Poset partially-ordered set monotone function
Group group homomorphism

Top topological space continuous map

Some of these categories have full subcategories that are in common use. These are formed
by restricting to a smaller class of objects while keeping the arrows between those objects
unchanged:

• Ab (abelian groups) is a full subcategory of Group.

• Haus (Hausdorff spaces) is a full subcategory of Top.

• Cpct (compact Hausdorff spaces) is a full subcategory of Top.

3.3. Other examples. There are many important examples of categories whose arrows do
not correspond to functions.

Example 3.1. A partially-ordered set (P,≤) may be interpreted as a category P as follows.

• The objects are the elements of P .

• If x ≤ y then there is a unique arrow x→ y; otherwise there is no arrow from x to y.

• Transitivity guarantees that x→ y and y → z can be composed to x→ z.

• Reflexivity guarantees the existence of identity arrows x→ x.

Remark. We do not make use of the anti-symmetry axiom (x ≤ y and y ≤ x implies x = y).
A set with a binary relation ≤ that is reflexive and transitive is called a pre-ordered set,
and can be interpreted as a category exactly as above. Pre-ordered sets correspond exactly
to thin categories, which are categories where each Mor(x, y) contains at most one arrow.

Example 3.2. A group G may be interpreted as a category G as follows.

• There is a single object ∗.

• There is an arrow for each group element g ∈ G.

• Composition is defined by group multiplication.

• The identity 1∗ is the arrow corresponding to the group identity.

Remark. We do not make use of the existence of inverses. A set with an associative binary
operation and an identity element is called a semigroup with identity, and can be in-
terpreted as a category exactly as above. Semigroups with identity correspond exactly to
monoids, which are categories with one object.
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The two examples above represent two extremes: (i) plenty of objects, at most one arrow
with given source and target; (ii) one object, plenty of arrows.

Example 3.3. A directed multigraph D determines a category D as follows.

• The objects are the vertices of D.

• There is an arrow x→ y for each path from x to y along directed edges.

• Composition is concatenation of paths.

• The identity arrow 1x is the empty path at x.

We call D the path category of D.

For instance, the graph •x
e // •y gives rise to the category

x
e //

1x

��
y

1y

��

with 2 objects and 3 arrows; and the graph •x
e // •y

f
**

g
44 •z gives rise to the category

x
e //

1x

��

fe

  

ge

99y

1y

�� f
**

g

44 z

1z

��

with 3 objects and 8 morphisms. Notice that the directed path
e−→ followed by

f−→ is

written
fe−→ rather than

ef−→, in accordance with the syntax of composition of arrows.

One important example of this type arises from the one-loop graph:

• eee

This results in a category with one object and morphisms {1, e, e2, e3, . . . }. In terms of
Example 3.2, this is the monoid corresponding to the semigroup N = {0, 1, 2, 3, . . . }. This
category lies at the heart of the theory of discrete dynamical systems.

Example 3.4. Every category C has an opposite category Cop. The objects of Cop are the
same as the objects of C, but the morphisms are reversed: Cop(x, y) = C(y, x). Thus each

arrow x
f // y in C becomes an arrow x y

fopoo in Cop. We define composition in the

opposite category by the only possible rule:

f opgop = (gf)op.

Clearly (Cop)op = C.
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3.4. Iso- and other morphisms. An arrow x
f // y is an isomorphism if there exists

an arrow x y
goo such that gf = 1x and fg = 1y.

Remark. The map g is unique if it exists, since g = g1y = g(fĝ) = (gf)ĝ = 1xĝ = ĝ for any
two such maps g, ĝ. Thus we can write f−1 := g without ambiguity.

Example 3.5. Here are several examples.

• Every identity map 1x is an isomorphism.

• The isomorphisms in Set are the bijections.

In a concrete category an isomorphism must be a bjiection. The converse may fail.

• In Vect, Group and Ab, the isomorphisms are precisely the maps which are bijections.
This is because the inverse of such a map is itself structure-preserving. For instance,
the inverse of a linear bijection is itself linear.

• The isomorphisms in Top are the homeomorphisms. A continuous bijection is not
necessarily a homeomorphism; the inverse is required to be continuous. In the full
subcategory Cpct of compact Hausdorff spaces, however, a continuous bijection is
always a homeomorphism.

• In the category P arising from a poset (P,≤), the only isomorphisms are the identity
arrows. Indeed, if there are arrows x→ y and y → x then x = y, by antisymmetry.

• In the category G arising from a group G, every arrow is an isomorphism.

• In the path category D of a directed multigraph D, the only isomorphisms are the
identity arrows 1x. This is because concatenation is strictly additive on path-length;
there is no cancellation.

In the category Set, an isomorphism is a function which is both 1–1 and onto. These
two separate notions can be generalized to an arbitrary category as follows.

Definition 3.6. Let x
f // y be an arrow in a category C.

• We say that f is a monomorphism (or f is monic) if fg = fh implies g = h for any
pair of arrows g, h with target x and a common source.

•
g
((

h

66 x
f // y

In other words, f is a monomorphism if it is algebraically left-cancellable.
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• We say that f is an epimorphism (or f is epic) if gf = hf implies g = h for any pair
of arrows g, h with source y and a common target.

x
f // y

g
((

h

66 •

In other words, f is an epimorphism if it is algebraically right-cancellable.

Proposition 3.7. An isomorphism is both a monomorphism and an epimorphism.

Proof. We can (left|right)-cancel f by (left|right)-composing with f−1. �

We immediately note that the converse isn’t true. An arrow that is both a monomorphism and an
epimorphism need not be an isomorphism. In some categories (including Set, Vect, Group) it can be
proven that it is, but in general it need not be. See homework 25, 26.

The lack of a converse should not surprise us: for f to be an isomorphism we need an arrow y → x, but
the definitions of monic and epic say nothing about the existence of arrows. In fact, there may be no arrows
y → x at all. In the 2-object 3-arrow category

x
f //

1x

��
y

1y

��

the arrow f is both monic and epic, for trivial reasons, but it is certainly not an isomorphism.

Proposition 3.8. In the category Set (i) a function is a monomorphism if and only if it is
1–1; and (ii) a function is an epimorphism if and only if it is onto.

Proof. Let f : A→ B.

(i) (⇐) Suppose f is 1–1, and suppose fg = fh for functions g, h : X → A. For all x ∈ X,
we have fg(x) = fh(x) and therefore g(x) = h(x) since f is 1–1. Thus g = h.

(i) (⇒) Suppose f is a monomorphism. We show that f is 1–1. Suppose a1, a2 ∈ A satisfy
f(a1) = f(a2). Let X = {∗} and define g, h : X → A by g(∗) = a1 and h(∗) = a2. Then
fg = fh, and therefore g = h since f is monic, and therefore a1 = a2.

(ii) (⇐) Suppose f is onto, and suppose gf = hf for functions g, h : B → X. For every
b ∈ B, there exists a ∈ A such that f(a) = b; so g(b) = gf(a) = hf(a) = h(b). Thus g = h.

(ii) (⇒) Suppose f is an epimorphism. We show that f is onto. Let X = {0, 1} and define
maps g, h : B → X as follows:

g(b) = 0 for all b ∈ B and h(b) =

{
0 for all b ∈ im(f)

1 for all b 6∈ im(f)

Then gf = hf , and therefore g = h since f is epic, and therefore im(f) = B. �
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3.5. Universal objects. Initial objects and terminal objects play a special role in a cate-
gory. Let C be a category and x ∈ C0.

• x is initial ⇔ for every y ∈ C0 there is exactly one arrow x→ y.

• x is terminal ⇔ for every w ∈ C0 there is exactly one arrow w → x.

Not every category has an initial or a terminal object. Some categories have both.

Example 3.9. The empty set ∅ is the unique initial object in Set. Every singleton set {x}
is terminal in Set.

Example 3.10. Every 0-dimensional vector space is both initial and terminal in Vect.

Example 3.11. A poset category has an initial (respectively, terminal) object ⇔ the poset
has a least (respectively, greatest) element.

Initial and terminal objects are essentially unique, and in that sense ‘universal’:

Proposition 3.12. Any two initial (respectively, terminal) objects in a category are isomor-
phic, by a uniquely determined isomorphism.

Proof. Let x, y be initial (respectively, terminal). Then there are unique arrows

x
f
((
y

g
hh

between them. In fact, these comprise an isomorphism: since there is a unique arrow x→ x,
it follows that gf = 1x; and since there is a unique arrow y → y it follows that fg = 1y. �

Many familiar constructions in mathematics can be thought of as universal constructions.
We give an example of this. Let U

α−→ V be an arrow in Vect. We will construct its cokernel
V/ im(α) in a crafty way.

Step 1. Define a category N of ‘nullifiers’ of α:

• Objects are linear maps β with source V such that βα = 0.

U
α //

0

66V
β // W

• Morphisms are linear maps φ : W → W ′ such that φβ = β′:

W

φ

��

V

β 88

β′ &&
W ′
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Step 2. Define Cokerα to be any initial object in this category. If one exists, then it is well
defined in the sense that any two choices are uniquely isomorphic to each other.

Step 3. Exhibit a specific instance of Cokerα:

π = quotient map V → V/ im(α), defined by v 7→ [v]mod im(α)

This certainly nullifies α. Moreover, given any other nullifier β we seek to construct β̄ in the
following diagram:

V
π //

β $$

V/ im(α)

β̄

��
W

To make the diagram commute, we are forced to define β̄[v] = βv for all v ∈ V . This is
well-defined because [v] = [v′] means that v′ = v + αu for some u ∈ U , and then

βv′ = β(v + αu) = βv + βαu = βv

since βα = 0. Thus β̄ is uniquely defined, and π is an initial object in N, as claimed.

3.6. Functors. Let C,D be categories. A functor F : C→ D is specified by the following
data:

• Every object x ∈ C0 is assigned an object F (x) ∈ D0.

• Every arrow α ∈ MorC(x, y) is assigned an arrow F [α] ∈ MorD(F (x), F (y)).

• The functor respects composition: F [βα] = F [β]F [α].

• The functor respects identities: F [1x] = 1F (x).

Example 3.13. There is a forgetful functor Top→ Set which takes a topological space to
its underlying set, and which takes each continuous function to itself.

Example 3.14. There is a forgetful functor Vect → Set which takes a vector space to its
underlying set, and which takes each linear map to itself.

Example 3.15. Let P be the category of subsets of the plane, with a unique arrow U → V
whenever U ⊆ V and no arrow otherwise. Then H1 is a functor P → Vect. Indeed, for
every U we construct

C0(U) C1(U)
∂0oo C2(U)

∂1oo

and define H1(U) = ker ∂0/im ∂1. Whenever U ⊆ V , we can draw a commutative diagram

C0(U)

��

C1(U)
∂0oo

��

C2(U)
∂1oo

��
C0(V ) C1(V )

∂0oo C2(V )
∂1oo

where the vertical maps are inclusions of vector spaces. Then there is a map

H1[U ⊆ V ] : H1(U)→ H1(V ); [γ]mod B1(U) 7→ [γ]mod B1(V )
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which is well-defined because B0(U) ⊆ B0(V ), and trivially linear. It is immediate that
H1[−] respects composition and identities.

Example 3.16. The free functor F : Set→ VectF is defined as follows:

F (A) = {functions v : A→ F such that v(a) = 0 for all but finitely many a}
This is a vector space (addition and scalar multiplication carried out pointwise) and it has
a basis consisting of elements (ea | a ∈ A) defined as follows:

ea(a) = 1;

ea(x) = 0, if x 6= a.

Given a function α : A→ B we define F [α] : F (A)→ F (B) by setting[
F [α](v)

]
: b 7→

∑
a∈α−1(b)

v(a)

for any function v ∈ F (A). This is the unique linear map F (A)→ F (B) with

F [α](ea) = eα(a)

on each basis vector ea.

Lecture 7

Example 3.17. Let G,H be groups and let G,H be the associated categories (with one
object, and a morphism for each group element). A functor Φ : G → H is determined by
the map g 7→ Φ[g], and this map is required to respect composition and the identity. Thus
functors G→ H are the same thing as group homomorphisms G→ H.

Example 3.18. Let P,Q be posets and P,Q be the associated categories (with an object
for every poset element and an arrow for every relation x ≤ y). Then functors P → Q are
the same thing as maps P → Q that are order-preserving.

3.7. Contravariant Functors. A contravariant functor is a ‘functor which reverses ar-
rows’. The standard formulation is to define a contravariant functor to be a functor C→ Dop,
where Dop is the opposite category to D. In practice, this means the following:

• Every object x ∈ C0 is assigned an object F (x) ∈ D0.

• Every arrow α ∈ MorC(x, y) is assigned an arrow F [α] ∈ MorD(F (y), F (x)).

• The functor respects composition: F [βα] = F [α]F [β].

• The functor respects identities: F [1x] = 1F (x).

The reversal of the composition law is the only definition that makes sense in this context:

z y
βoo x

αoo

βα

ff becomes F (z)
F [β]

//

F [α]F [β]

44F (y)
F [α]

// F (x)
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Remark. Functors in the usual sense may be called covariant functors, when distinguishing
them from contravariant functors. I will usually simply speak of functors C → D and
functors C→ Dop. I may sometimes, illogically, refer to a ‘contravariant functor C→ Dop’
when I simply mean a functor C → Dop. In those instances, the word ‘contravariant’ is
intended to emphasize the op rather than cancel it out.

Example 3.19. Let P,Q be categories associated to posets P,Q. Functors P → Qop

correspond to order-reversing maps P → Q.

Example 3.20. A special case of the previous example is the Galois correspondence for a
Galois extension E/F of fields: the poset of intermediate fields is reverse-isomorphic to the
poset of subgroups of the group Gal(E/F) of automorphisms of E that fix F.

Example 3.21. Vector-space duality defines a functor (−)∗ : Vect→ Vectop:

• Given a vector space V , we define V ∗ = HomF(V,F).

• Given a linear map T : V → W , we define T ∗ : W ∗ → V ∗ to be the map (α 7→ αT ).

V
T //

αT   

W

α
��
F

• The composition law (TS)∗ = S∗T ∗ follows by contemplating the diagram

U
S //

TS

$$

αTS

!!

V
T //

αT

��

W

α

��
F

or by writing S∗T ∗(α) = S∗(αT ) = αTS = (TS)∗α.

• The identity law (1V )∗ = 1V ∗ is obvious from the definition.

Remark. Vector space double-duality is the composite of two contravariant functors, and
therefore a covariant functor (−)∗∗ : Vect → Vect. A finite-dimensional vector space
is ‘naturally isomorphic’ to its double dual, and in general every vector space is ‘naturally’
embedded as a subspace of its double dual. The concept of a natural transformation between
functors is what gives meaning to the word ‘natural’ here.

3.8. Diagram categories and natural transformations. The collection of functors be-
tween two categories is something that can be studied in its own right. Let C,D be categories,
and define

CD = {functors D→ C}.
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There are two different flavours here.

• If D is a small category (meaning that its collection of objects is a set rather than a
proper class), then we typically study the collection of all such functors. In many cases
we think of CD as a category of ‘diagrams in C with shape D’. Any two such diagrams
can be compared by defining morphisms between them in a sensible way.

• if D is a large category, then we are typically interested in studying specific functors
from D to C. A well-chosen functor allows us to exploit what we know about objects
and arrows in C to answer questions about objects and arrows in D. For example, alge-
braic topology makes extensive use of functors from topological categories to algebraic
categories. In doing so, it becomes important to compare functors.

The mechanism for comparing two functors or diagrams is the natural transformation. It
has the same definition in both situations. We will mostly consider the case where D is a
small category, so that functors are thought of as diagrams and the entire collection CD is
of interest.

Technical Comment. If D is a large category then the right-hand side in the definition of CD

is a collection of classes rather than a collection of sets. This is not something we usually have a

name for in the standard set-theoretic foundations. There are ways of working around this. The

simplest is to agree never to ‘collect’ all possible functors at any one time; just the few that are

needed for any given purpose. One can continue to use the CD = {. . . } notation as a convenient

pretence to keep the high-level discussion tidy.

When D is small, it follows that CD is itself a category by taking natural transformations
to be the arrows. And when D is large, CD is a somewhat illegal object which nonetheless
behaves like a category.

Example 3.22. (i) Consider the following directed graph:

• // • // •

Consider the category of vector space diagrams shaped like the graph. An object is a diagram
of vector spaces and linear maps

V0

v01 // V1

v12 // V2

and a morphism between two such objects is a diagram

V0

v01 //

φ0
��

V1

v12 //

φ1
��

V2

φ2
��

W0
w0

1

// W1
w1

2

// W2

where the two squares commute: φ1v
0
1 = w0

1φ0 and φ2v
1
2 = w1

2φ1.

Note. The outer rectangle then commutes automatically: φ2(v1
2v

0
1) = w1

2φ1v
0
1 = (w1

2w
0
1)φ0.
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(ii) Vector-space diagrams shaped like the directed graph in (i) are the same thing as functors
to Vect on the path category

0 // 88
��

1 //
��

2
��

associated to the directed graph. Indeed, such a functor F is constructed by specifying data
as follows.

• Select three vector spaces V0, V1, V2 and set F (k) = Vk for k = 0, 1, 2.

• Select a linear map v0
1 : V0 → V1 and set F [0→ 1] = v0

1.

• Select a linear map v1
2 : V1 → V2 and set F [1→ 2] = v1

2.

This is exactly the same data that define the diagrams of (i). To complete the construction
of the functor, we must decide what to do with the identity arrows and the composite arrow
0 → 1 → 2. But these choices are forced by the defining properties of a functor: we must
have F [1k] = 1Vk for k = 0, 1, 2 and F [0→ 1→ 2] = F [1→ 2] ◦ F [0→ 1] = v1

2v
0
1.

Remark. The same principle applies to any directed graph D and its path category D:
diagrams in a category C shaped like D are the same thing as functors D→ C.

Definition 3.23. Let C,D be categories and let F,G : D → C be functors. A natural
transformation η from F to G, written

η : F ⇒ G or F
η +3 G or C

F ''

G

77�� η D ,

is defined as follows.

• To each object x ∈ D we assign an arrow ηx : F (x)→ G(x) of C.

• For each arrow x
α // y of C we require that the diagram

F (x)
F [α]

//

ηx

��

F (y)

ηy

��
G(x)

G[α]
// G(y)

commutes.

The morphisms defined in Example 3.22 (and homework 30) are natural transformations.

For each F we define the identity natural transformation F
1F +3 F by (1F )x = 1F (x).

And given two natural transformations

F
η +3 G and G

ζ +3 H
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we define their composite

F
ζη +3 H

by (ζη)x = ζxηx. In this way, CD becomes a category.

Remark. There are other ways to compose natural transformations. The version that we have given, which
makes CD a category, is sometimes known as ‘vertical’ composition. There is also a ‘horizontal’ composition
which combines two natural transformations

C

F
&&

G

88�� η D and D

H
&&

K

88�� ζ E

to obtain a third natural transformation

C

HF
&&

KG

88�� E

written η ∗ ζ : HF ⇒ KG.

3.9. Limits and colimits. Many important and familiar constructions in mathematics can
be expressed as the limit or colimit of a functor. Perhaps the most prevalent instances
are products and coproducts (homework 28 and 29). Limits and colimits are formed by
constructing a suitable category and looking for terminal or initial objects in that category.
They are ‘universal’ constructions and that explains their importance.

Remark. We saw in the previous section that diagrams shaped like a directed graph D are
the same thing as functors from the path category D. Therefore we can talk about the limit
or colimit of a diagram. Most of our examples are of this type.

Limits. (i) Let F : D→ C be a functor. A cone on F is defined by the following data:

• An object X of C.

• An arrow X
pd // F (d) for each d ∈ D0. (These are arrows in C.)

• For each arrow d1
α // d2 of D, the diagram

F (d1)

F [α]

��

X

pd1
55

pd2 ))
F (d2)

is required to commute.

Thus a cone is an object of C and a selection of ‘compatible’ arrows to each F (d).
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(ii) A morphism between cones (X, (pd)), (Y, (qd)) is defined to be an arrow X
ξ // Y such

that the diagram

X
pd

))
ξ

��

F (d)

Y
qd

55

commutes for all d ∈ D. Thus we get a category Cone(F ).

(iii) If Cone(F ) has a terminal object, it is called a limit of F . Since terminal objects are
unique up to a unique isomorphism, it is customary to speak of ‘the’ limit of F .

Colimits. (i) Let F : D → C be a functor. A cocone on F is defined by the following
data:

• An object X of C.

• An arrow F [d]
id // X for each d ∈ D0. (These are arrows in C.)

• For each arrow d1
α // d2 of D, the diagram

F (d1)

F [α]

��

id1

))
X

F (d2)
id2

55

is required to commute.

Thus a cone is an object of C and a selection of ‘compatible’ arrows from each F (d).

(ii) A morphism between cocones (X, (id)), (Y, (jd)) is defined to be an arrow X
ξ // Y

such that the diagram

X

ξ

��

F (d)

id
55

jd )) Y

commutes for all d ∈ D. Thus we get a category coCone(F ).

(iii) If coCone(F ) has an initial object, it is called a colimit of F . Since initial objects are
unique up to a unique isomorphism, it is customary to speak of ‘the’ colimit of F .

A limit is a terminal cone. A colimit is an initial cocone.
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Example 3.24 (products and coproducts). Consider diagrams in a category C shaped like
the graph

•1 •2

with two vertices and no edges. Such a diagram is simply a choice of two objects of C:

A1 A2

The product of A1 and A2 is defined to be the limit of this diagram, if it exists. It is
terminal in the category whose objects look like this:

A1 X
p1oo p2 // A2

See homework 29 for an example.

Dually, the coproduct of A1 and A2 is the colimit of the diagram if it exists. It is initial
in the category whose objects look like this:

A1
j1 // X A2

j2oo

See homework 28 for an example.

Here are some standard examples of products and coproducts:

category product coproduct

Set Cartesian product A1 × A2 disjoint union A1 t A2

Top product space X1 ×X2 disjoint union X1 tX2

Vect direct sum V1 ⊕ V2 direct sum V1 ⊕ V2

Group Cartesian product G1 ×G2 free product G1 ∗G2

The maps pi, p2 or j1, j2 are part of the description of each product or coproduct. In each of
the table entries it should be clear what those maps are.

Note. Products and coproducts of three or more objects can be defined using empty graphs
with the appropriate number of vertices (finite or infinite). If the number of objects is
finite, then it can be proved that the same result is obtained by iterating the two-object
construction enough times.

Example 3.25. The limit of a diagram of the form

B

g
��

A
f
// C

or equivalently A
f // C B

goo

is called a pullback. A cone on this diagram is a space X and maps pA, pB, pC making the
left diagram commute:

X
pB //

pA
��

pC

  

B

g
��

A
f
// C

X
pB //

pA
��

B

g
��

A
f
// C
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However, we can omit pC and simply look for pA, pB making the right diagram commute.
This is because pC is necessarily equal to fpA = gpB so it is redundant to specify it.

Note. The colimit of the diagram is uninteresting: it is C with the maps f, g, 1C .

Proposition 3.26. In Set the pullback of A
f // C B

goo is the set

N = {(a, b) | a ∈ A, b ∈ B, f(a) = g(b)} ⊆ A×B
together with the projections nA, nB onto A and B.

Proof. First we verify that (N, nA, nB) is a cone. For any (a, b) ∈ N we have

fnA(a, b) = f(a) = g(b) = gnB(a, b),

so fnA = gnB.

Now consider an arbitrary cone (X, pA, pB). We seek a map α making the following
diagram commute:

X
pB

##
pA

��

α

  
N

nB //

nA

��

B

g
��

A
f
// C

Since nAα = pA and nBα = pB, we must have α(x) = (pA(x), pB(x)) for all x ∈ X. And if
we take this as the definition of α, the diagram does commute. Thus the morphism α exists
and is unique. �

Example 3.27. The colimit of a diagram of the form

A

C g
//

f

OO

B

or equivalently A C
g //foo B

is called a pushout. A cone on this diagram is a space X and maps jA, jB, jC making the
left diagram commute:

A
jA // X

C

f

OO

g
//

jC

>>

B

jB

OO A
jA // X

C

f

OO

g
// B

jB

OO

However, we can omit jC and simply request jA, jB making the right diagram commute.
This is because jC is necessarily equal to jAf = jBg so it is redundant to specify it.

Remark. The colimit of the diagram is uninteresting: it is C with the maps f, g, 1C .
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Proposition 3.28. In Set the pushout of A C
f
oo

g
// B is the set

U =
{(a, 0) | a ∈ A} ∪ {(b, 1) | b ∈ B}

∼
=
A tB
∼

where ∼ is the smallest equivalence relation which contains the relations (f(c), 0) ∼ (g(c), 1)
for all c ∈ C; along with the maps

uA : A→ U ; a 7→ [(a, 0)], and uB : B → U ; b 7→ [(b, 1)].

Proof. First we verify that (U, uA, uB) is a cocone. Given c ∈ C we have

uA(f(c)) = [(f(c), 0)] = [(g(c), 1)] = uB(g(c))

so uAf = uBg.

Now consider an arbitrary cocone (X, iA, iB). We seek a map α making the following
diagram commute:

X

A
uA //

iA
33

U

α

>>

C

f

OO

g
// B

uB

OO iB

KK

Since αuA = iA and αuB = iB, we must have α([(a, 0)]) = iA(a), and α([(b, 1)]) = iB(b).
To show that α exists we must show that these formulas define a consistent value for the
elements of each equivalence class. It is enough to test this for the generating relations. And
indeed

α([(f(c), 0)]) = iA(f(c)) = iB(g(c)) = α([(g(c), 1)])

as required. Thus the morphism α exists and is unique. �

The situation for Set has the following form: a pullback is a subset of the product of A,B
and a pushout is a quotient set of the coproduct of A,B. Notice also that the pullback of

A // {∗} Boo

is precisely the product A×B, using the fact that {∗} is terminal; and the pushout of

A ∅oo // B

is precisely the coproduct A tB, using the fact that ∅ is initial.

3.10. The homotopy category. Algebraic topologists spend much of their time working
in the homotopy category hTop. This is a modification of Top defined as follows:

• The objects of hTop are topological spaces.

• Given objects X, Y the set of arrows hTop(X, Y ) is defined to be the set of equivalence
classes of continuous functions X → Y with respect to the homotopy relation.
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We have already, covertly, worked in the homotopy category: the continuous winding number
on loops is a function hTop(S1,R2 − {0})→ Z. Let us review the general definition.

Two continuous maps f, g : X → Y are homotopic if there exists a homotopy
between them; that is, a continuous function

F : X × [0, 1]→ Y

such that
F (x, 0) = f(x) and F (x, 1) = g(x) for all x ∈ X.

We write f ' g or f 'F g. The relation is reflexive, symmetric and transitive, by
considering the homotopies

R(x, t) = f(x), S(x, t) = F (x, 1− t), T (x, t) =

{
G(x, 2t) (0 ≤ t ≤ 1

2
)

H(x, 2t− 1) (1
2
≤ t ≤ 1)

which give
f 'R f, g 'S f when f 'F g, f 'T h when f 'G g and g 'H h

respectively.

To confirm that hTop is a category, we need to check one thing:

Proposition 3.29. Composition [f ][g] = [fg] is well-defined in hTop.

Proof. Let f1, f2 : X → Y and g1, g2 : Y → Z be continuous maps with f1 'F f2 and
g1 'G g2. Then g1f1 'H g2f2 where H(x, t) = G(F (x, t), t). �

One major consequence of working in hTop is that there are many more isomorphisms.
Two spaces X, Y are isomorphic in hTop if there are continuous maps f : X → Y , and
g : Y → X such that

[g][f ] = [1X ] and [f ][g] = [1Y ];

in other words, such that

gf ' 1X and fg ' 1Y .

In that case we say that the spaces X, Y are homotopy equivalent and we write X ' Y .
The map f is a homotopy equivalence (as is the map g).

Proposition 3.30. The 1-point space {∗} is homotopy equivalent to any star-shaped subset
U ⊆ Rn. In particular, {∗} ' Rn for all n.

Proof. Let u0 ∈ U be a star-center, so that |[u0, u]| ⊆ U for every u ∈ U . Define maps in
both directions:

j : {∗} → U ; ∗ 7→ u0

p : U → {∗}; u 7→ ∗

Then pj = 1{∗} trivially, and jp ' 1U by the homotopy H(u, t) = u0 + t(u− u0). �
54



In general, we say that a space X is contractible if it is isomorphic to {∗} in the homotopy
category. It is not hard to see that X is contractible if and only if 1X is homotopic to a
constant function X → X (indeed, any constant function).

Proposition 3.31. The inclusion map j : Sn−1 → Rn − {0} is a homotopy equivalence.

Proof. We define a homotopy inverse

p : Rn − {0} → Sn−1; x 7→ x/|x|.

Then pj = 1Sn−1 and jp ' 1Rn−{0} by the homotopy H(x, t) = x|x|t−1. �

One of the reasons for working in the homotopy category is that it enables proof strategies
like the one in the following theorem.

Theorem 3.32. Suppose there exists a functor H : hTop → Vect such that H({∗}) = 0
and H(Sn−1) 6= 0. Then the Brouwer fixed-point theorem is true in n-dimensions.

Repeated for emphasis: we can prove the Brouwer fixed-point theorem by finding a functor.

Proof. Suppose there exists a fixed-point free map g : Dn → Dn. Then the map

f : Sn−1 → Rn − {0}; u 7→ u− g(u)

is homotopic in Rn − {0} to the inclusion map j(u) = u by the homotopy

J(u, t) = u− tg(u).

At the same time, f is homotopic in Rn − {0} to the constant map k(u) = −g(0) by the
homotopy

K(u, t) = tu− g(tu).

Thus H[j] = H[f ] = H[k].

Now we show that H[j] 6= 0. Let p : Rn−{0} → Sn−1 be the normalization map x 7→ x/|x|,
so that the diagram

Sn−1 j //

1Sn−1 %%

Rn − {0}
p

��
Sn−1

commutes. Applying the functor H, we get a commutative diagram

H(Sn−1)
H[j]

//

1H(Sn−1) ''

H(Rn − {0})
H[p]

��
H(Sn−1)

of vector spaces. The identity map on the diagonal is not zero because H(Sn−1) 6= 0, and it
follows that H[j] 6= 0.
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Now we show that H[k] = 0. Since k is constant, it can be factored through the one-point
space {∗} so that the diagram

Sn−1 q //

k ##

{∗}
r

��
Sn−1

commutes. The horizontal map q is the unique map to ∗, and the vertical map r takes ∗ to
the constant value taken by k. Applying the functor H, we get a commutative diagram

H(Sn−1)
H[q]

//

H[k] &&

0

H[r]

��
H(Sn−1)

which gives a factorization of H[k] through the zero vector space. It follows that H[k] = 0.

Thus H[j] 6= H[k], which contradicts our earlier calculation that H[j] = H[k]. �

Lecture 8

3.11. Chain complexes. We now describe two algebraic categories which are essential to
our study of algebraic topology. We work with vector spaces over a field F; there are
analogous categories for abelian groups and for modules over a commutative ring.

A chain complex is a collection V∗ = (Vk, ∂k) of vector spaces and linear maps organised
in a sequence

V0 V1
∂0oo V2

∂1oo V3
∂2oo . . .

∂3oo

where successive maps compose to zero; in other words ∂2 = 0.

A chain map T : V∗ → W∗ is a collection of linear maps T = (Tk : Vk → Wk) for which
the diagram

V0

T0
��

V1
∂0oo

T1
��

V2
∂1oo

T2
��

V3
∂2oo

T3
��

. . .
∂3oo

W0 W1
∂0

oo W2
∂1

oo W3
∂2

oo . . .
∂3

oo

commutes; in other words T∂ = ∂T .

A chain homotopy K : S ⇒ T between two chain maps S, T : V∗ → W∗ is a collection
of linear maps (Kk : Vk → Wk+1)

V0

����

K0

!!

V1
oo

����

K1

!!

V2
oo

����

K2

!!

V3
oo

����

K3

!!

. . .oo

W0 W1
oo W2

oo W3
oo . . .oo

such that ∂K +K∂ = T − S.
(This means ∂kKk +Kk−1∂k−1 = Tk − Sk when k is positive, and also ∂0K0 = T0 − S0.)
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If there exists a chain homotopy S ⇒ T we write S ' T (or S 'K T if we wish to name
the chain homotopy) and say that S, T are chain-homotopic. It is easy to verify that this is
an equivalence relation. From this, we can define two categories:

• CC is the category whose objects are chain complexes and whose arrows are chain
maps.

• hCC is the category whose objects are chain complexes and whose arrows are chain-
homotopy equivalence classes of chain maps.

We need to show that composition is well-defined in hCC. Indeed if we have maps

V∗
S //

S′
// W∗

T // X∗

with S 'K S ′ then TS 'TK TS ′, and if we have maps

V∗
S // W∗

T //

T ′
// X∗

with T 'L T ′ then TS 'LS T ′S.

Clearly there is a functor CC→ hCC which keeps objects unchanged and which takes each
chain map to its equivalence class. It is similar in spirit to a forgetful functor, in that it
‘forgets’ the distinction between chain maps that are chain-homotopic to each other.

Definition 3.33. For k ≥ 0, let Ck,Zk,Bk be the functors CC→ Vect defined by

Ck(V∗) = Vk, Zk(V∗) = ker(∂k−1), Bk(V∗) = im(∂k),

Ck[T ] = Tk, Zk[T ] = Tk|ker ∂k−1
, Bk[T ] = Tk|im ∂k .

It is easily shown (homework 30) that these are well-defined functors.

Definition 3.34. For k ≥ 0, let Hk be the functor CC→ Vect defined by

Hk(V∗) =
ker(∂k−1)

im(∂k)
, Hk[T ]: [γ] 7−→ [Tkγ].

It is easily shown (homework 35) that this is a well-defined functor, and moreover it descends
to a functor Hk : hCC −→ Vect.

Homology theory in algebraic topology takes advantage of the following diagram:

Top

��

// CC

�� ##
hTop // hCC

Hk // Vect

The trick is to construct the horizontal functors Top −→ CC and hTop −→ hCC and then
let Hk work its magic. Everything that happens after the chain complex is constructed is
called homological algebra.
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We finish this section with a short discussion of exact sequences. A three-term sequence
of vector spaces and linear maps

U
f // V

g // W

is exact if ker g = im f . We may say that it is ‘exact at V ’ to emphasize the vector space
whose two subspaces are being compared. A longer sequence such as

U1
f1 // U2

f2 // U3
f3 // . . .

fn−1 // Un

may be exact at any of the individual terms U2, U3, . . . , Un−1, or at all of them, in which case
it is simply said to be exact.

Example 3.35. A chain complex V∗ is exact at Vk iff its homology Hk(V∗) is zero.

Example 3.36. The sequence U
f // V // 0 is exact iff f is surjective.

Example 3.37. The sequence 0 // U
f // V is exact iff f is injective.

Example 3.38. The sequence 0 // U
f // V // 0 is exact iff f is an isomorphism.

We finish with a calculation that will prove useful. Suppose U
f // V

g // W is exact.
Then, starting with the rank–nullity formula, we get

dim(V ) = dim(ker g) + dim(im g)

= dim(im f) + dim(im g) = rank(f) + rank(g).

It is worth recalling the proof of the rank–nullity formula: take a basis v1, . . . , vk for ker(g);
extend it to a basis v1, . . . , vk, vk+1, . . . , vn for V ; show that the vectors g(vk+1), . . . , g(vn) are
linearly independent in W and therefore constitute a basis of im(g).

In homework 44 we consider what happens when gf = 0 and the sequence is not necessarily
exact.
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4. Simplicial Complexes

Simplicial complexes are discrete objects that may be used to study continuous spaces.
We begin by studying simplicial complexes in their own right, and then we establish the
connection with continuous topology.

4.1. Abstract simplicial complexes. A simplicial complex is a nonempty set X of finite
sets which is closed under taking subsets:

σ ∈ X and τ ⊆ σ implies τ ∈ X

Example. The set
M = {{2, 4}, {3, 4}, {1, 2, 3}}

is not a simplicial complex, but its closure under taking subsets

X = {Ø, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}}
is a simplicial complex. This can be drawn as follows:

1

2

3

4

Remark. Here we can recover M as the set of maximal elements of X: those elements that
are not subsets of some larger element of X.

There is plenty of terminology.

• If the elements of X are subsets of a set V , we say that X is a simplicial complex on V .

• The smallest such V is given by considering the singleton elements of X. In the example
above, the singletons are {1}, {2}, {3}, {4} so we can take V = {1, 2, 3, 4}. This is the
set of vertices of X, which we may write V = V (X).

• Each σ ∈ X is called a simplex (plural: simplices) of X.

• We call σ a k-simplex (or k-cell) and write dim(σ) = k, if its cardinality is k + 1.

• The dimension of the complex is dim(X) = max (dim(σ) | σ ∈ X).

In the example above, we have

0-cells: {1}, {2}, {3}, {4}
1-cells: {1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}
2-cells: {1, 2, 3}

and we can think of Ø as a (−1)-cell. The complex X is 2-dimensional.
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• The k-skeleton X(k) consists of all cells of X of dimension at most k.

Here are the skeleta X(0), X(1), and X(2) = X for the example above.

1

2

3

4 1

2

3

4 1

2

3

4

• If τ ⊆ σ we say that τ is a face of σ, or σ is a coface of τ . We write τ ≤ σ.

• If τ ≤ σ and dim(τ) = dim(σ)− 1, we say that τ is a facet of σ.

Example. The simplex {1, 2, 3} has 8 faces (6 ‘proper’ faces, as well as Ø and the cell itself).
Three of these are facets: {2, 3}, {1, 3}, {1, 2}.

Example. An n-simplex σ = {a0, a1, . . . , an} has n+ 1 facets:

σk = {a0, . . . , âk, . . . , an} = {a0, . . . , ak−1, ak+1, . . . , an}

(Here the caret ˆ indicates that ak is to be omitted from the list.)

4.2. Examples and constructions. Here are some important constructions.

The empty complex. This is the complex

E = {Ø}

whose only simplex is the (−1)-cell Ø.

The standard n-simplex.

Bn = {all subsets of {0, 1, . . . , n}}

This is the simplicial equivalent of an n-dimensional ball.

The boundary of the standard n-simplex.

∂Bn = B(n−1)
n

= {all subsets of {0, 1, . . . , n} of cardinality at most n}

This is the simplicial equivalent of a sphere of dimension n− 1.
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Cones. A complex C is a cone if there exists a vertex ∗ such that

σ ∈ C implies σ ∪ {∗} ∈ C.

The vertex ∗ is called a cone point for C.

Example. The complex

{Ø, {1}, {2}, {3}, {1, 2}, {2, 3}}

is a cone with respect to the vertex 2, whereas

{Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}

is not a cone with respect to any vertex.

Remark. Cones are the simplicial equivalent of star-shaped domains.

The cone on a complex. Every simplicial complex X is contained in a cone CX, constructed
as follows: introduce a new vertex ∗ not already in V = V (X), and include a new cell σ∪{∗}
for every σ ∈ X. Formally:

CX = {σ, σ ∪ {∗} | σ ∈ X} = {σ ⊆ V ∪ {∗} | σ ∩ V ∈ X}

Notice that CX contains exactly twice as many simplices as X (counting the empty cell).

Example. If

X = {Ø, {1}, {2}, {3}, {1, 2}}

then

CX = {Ø, {1}, {2}, {3}, {1, 2}, {∗}, {∗, 1}, {∗, 2}, {∗, 3}, {∗, 1, 2}}.

Remark. If we iterate the cone construction, for instance to construct CCX, we need a new
symbol for each new cone point.

The relative cone on a subcomplex. Sometimes we ‘cone off’ just part of a simplicial complex.
Let X, Y be complexes with Y ⊆ X. Then

C(X, Y ) = X ∪ CY

is the relative cone of the inclusion map Y → X.

Example. If

X = {Ø, {1}, {2}, {1, 2}}, Y = {Ø, {1}, {2}}

then

C(X, Y ) = {Ø, {1}, {2}, {1, 2}, {∗}, {∗, 1}, {∗, 2}}.
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The suspension of a complex. This is the union of two cones on X with respect to points n
and s (which are assumed not to belong to V = V (X)). Formally:

ΣX = {σ, σ ∪ {n}, σ ∪ {s} | σ ∈ X}

Notice that ΣX has thrice as many simplices as X. We may think of X as being ‘suspended’
as the equator between a north pole n and a south pole s.

Example. If

X = {Ø, {1}, {2}}
then

ΣX = {Ø, {1}, {2}, {n}, {n, 1}, {n, 2}, {s}, {s, 1}, {s, 2}}.

An alternative definition is ΣX = C(CX,X).

The nerve of a covering. Let U1, . . . , Un be sets, and write U = (U1, . . . , Un). The nerve
of U is a simplicial complex on the vertex set {1, 2, . . . , n} defined by the following condition:

(∩) σ ∈ Nerve(U) ⇔
⋂
k∈σ

Uk 6= Ø

Remark. Quite commonly, the (Uk) occur as subsets covering a larger set U = U1 ∪ · · · ∪Un.

Example. A collection of sets in the plane, and the nerve of this collection:

U3

U1

U6
U7 U5

U4

U2

1

2

7

3

4

5

6

Remark. The construction is equally valid for an infinite family of sets U = (Uk | k ∈ K).
Nerve(U) consists of the finite subsets σ ⊂ K that satisfy condition (∩).

The Vietoris–Rips complex. Let X be a metric space and let R ≥ 0. The Vietoris–Rips
complex with diameter R is a simplicial complex on X defined by the condition:

σ = {x0, x1, . . . , xn} ∈ Rips(X,R) ⇔ d(xi, xj) ≤ R for all 0 ≤ i, j ≤ n

Example. Let X be a finite collection of robotic sensors located in the plane. The metric is
Euclidean distance. The coverage criterion (see Theorem 2.18) makes use of the 2-skeleton
Rips(X,R)(2) of the Vietoris–Rips complex. The 1-cells are used to define the fence cycle;
the 2-cells are used to determine if the fence cycle is a boundary; if the test is successful then
unused 0-cells can be switched off to conserve power.
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Chains and antichains. Let P be a partially-ordered set (poset). There are two natural
complexes on P , determined by the partial-order structure.

The complex of chains:2

σ ∈ Ch(P ) ⇔ σ is a finite chain in P

⇔ σ is a totally ordered finite subset of P

The complex of antichains:

σ ∈ Anti(P ) ⇔ σ is a finite antichain in P

⇔ σ is a totally unordered finite subset of P

If σ is a chain (resp. antichain) and τ ⊆ σ, then τ is also a chain (resp. antichain), so these
definitions yield simplicial complexes.

Example. Let P be the poset with the following Hasse diagram:

1

2 3

4

Thus 1 is the largest element, 4 is the smallest, and 2, 3 are incomparable with each other.

The maximal chains of P are {1, 2, 4} and {1, 3, 4} so the complex of chains consists of all
subsets of these two sets:

Ch(P ) = {Ø, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 4}, {3, 4}, {1, 2, 4}, {1, 3, 4}}

The maximal antichains are {1}, {4}, and {2, 3} so the complex of antichains is

Anti(P ) = {Ø, {1}, {2}, {3}, {4}, {2, 3}}

4.3. Elementary equivalence. There is a clear notion of isomorphism between simplicial
complexes. For instance, the complexes

1

2

3

4 cat

dog

∗

rat

are isomorphic under the bijection

1↔ cat, 2↔ dog, 3↔ *, 4↔ rat

2It is an accident that this sounds like ‘chain complex’.
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between their vertex sets; and also under the bijection

1↔ cat, 2↔ *, 3↔ dog, 4↔ rat.

We write X ∼= Y to indicate that the complexes X, Y are isomorphic.

Isomorphism is rather stringent, and has nothing to say about our intuition that the first
three of the following complexes have a certain similarity not shared by the fourth:

According to the isomorphism relation, all four complexes are different. We wish to define a
weaker relation, under which the first three of these complexes are equivalent to each other
and are not obviously equivalent to the fourth.

Let X be a simplicial complex and suppose τ ∈ X is a non-empty simplex with exactly
one proper coface σ ∈ X (‘proper’ meaning ‘not equal to τ itself’). Then,

Y = X − {τ, σ}
is a simplicial complex. We call Y an elementary collapse of X, and write X ↘ Y .
Reciprocally, we may call X an elementary expansion of Y , and write Y ↗ X.

The idea is that elementary collapses are topology-preserving, in some sense to be made
precise later.

Example. The simplicial complex on the left has four possible elementary collapses:

↘

↘

↘

↘

Notice, for example, that the number of holes (one) remains unchanged in each collapse.
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Example. What is special about having exactly one proper coface? In each of the following
situations, we remove a 1-simplex and all of its cofaces.

The edge {3, 6} has two proper cofaces:

1

2 3

4

56

↘ 1

2 3

4

56

The edge {3, 5} has one proper coface:

1

2 3

4

56

↘ 1

2 3

4

56

The edge {3, 4} has no proper cofaces:

1

2 3

4

56

↘ 1

2 3

4

56

The second example is the only one where the essential topological structure of the complex
is not changed by the operation. In the first example a new hole is created, whereas in the
third example an existing loop is broken.

Definition 4.1. Two simplicial complexes X, Y are Whitehead equivalent if there is a
sequence X0, X1, . . . , Xn of simplicial complexes such that

• X ∼= X0

• Y ∼= Xn

• For each k = 1, . . . , n, either Xk−1 ↗ Xk or Xk−1 ↘ Xk.

We write X ' Y to indicate that X, Y are Whitehead equivalent. It is easy to see that this
is an equivalence relation. In fact, it is the smallest (i.e. most discriminating) equivalence
relation such that isomorphic complexes are equivalent and where X ↘ Y implies X ' Y .

The usual way to show that two complexes are Whitehead equivalent is to find an explicit
sequence of collapses and expansions relating them.

Theorem 4.2. For n ≥ 3, let Cn denote the cycle of length n; that is, the simplicial complex
on {1, 2, . . . , n} whose maximal simplices are

{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}.
Then Cm ' Cn for every m,n ≥ 3.
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Lemma 4.3 (edge splitting). Let X be a simplicial complex, and suppose that {a, b} ∈ X
has no proper cofaces. Let Y be the complex obtained by splitting the edge in two along a
new vertex m 6∈ V (X):

Y = X ∪ {{m}, {a,m}, {m, b}} − {{a, b}}
Then Y ' X.

Proof. In pictures, this is

↗ ↗ ↘

Formally we define

X0 = X

X1 = X0 ∪ {{m}, {a,m}}
X2 = X1 ∪ {{b,m}, {a, b,m}}
X3 = X2 − {{a, b}, {a, b,m}}

and then X = X0, Y = X3, and X0 ↗ X1 ↗ X2 ↘ X3 as required. �

Proof of Theorem 4.2. Since Cn+1 is obtained from Cn by splitting the edge {n, 1} in two
along a new vertex n+ 1, the result follows from the lemma. �

A simplicial complex is collapsible if it is Whitehead equivalent to the 1-point complexB0.

Theorem 4.4. Every finite cone is collapsible.

Proof. Let CX be a cone with cone point ∗. We use induction on the number of cells of X.
If X is the empty complex then we are done, because

CE = {∅, {∗}}
is isomorphic to B0. Otherwise let τ be a maximal simplex of X, so that X − τ is also a
simplicial complex. Then τ has exactly one coface in CX, namely σ = τ ∪ {∗}. Then

CX ↘ CX − {σ, τ} = C(X − τ)

which is collapsible by the inductive hypothesis. �

There are two natural tasks that arise when considering any equivalence relation:

(1) Show that X ' Y . (2) Show that X 6' Y .

For Whitehead equivalence, we can answer (1) by exhibiting a suitable sequence of collapses
and expansions. It is not so easy to answer (2) by brute force, because we have to rule out
all possible sequences. There is no bound on how long such a sequence might be, and the
complexes Xk that occur on the way may well be enormous. We need invariants.
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Proposition 4.5 (connected components). Let b0(X) denote the number of connected com-
ponents of X. This is defined as the number of equivalence classes of vertices of X under
the relation

v ∼ w ⇔ there is a path of edges from v to w.

Then b0 is Whitehead invariant.

(Later we will define b0 homologically.)

Proof. We show that b0 is unchanged by an elementary collapse. Consider Y = X − {σ, τ}
where σ is the only proper coface of τ .

• If dim(τ) = 0, we may write τ = {a}, σ = {a, b}. Then X has the same connected
components as Y , except that the component containing b has an extra vertex a.

• If dim(τ) = 1, we may write τ = {a, b}, σ = {a, b, c}. Then X has the same vertices
as Y but one fewer edge {a, b}. The equivalence relation is the same, because the ‘lost’
relation a ∼ b is recovered in Y by combining a ∼ c and c ∼ b.

• If dim(τ) ≥ 2, then the set of vertices and the equivalence relation are unchanged.

In all three cases, b0(X) = b0(Y ). �

Example 4.6. The m-point space and the n-point space

{Ø, {1}, {2}, . . . , {m}} and {Ø, {1}, {2}, . . . , {n}}
are not Whitehead equivalent if m 6= n.

Proposition 4.7. The parity of the total number of cells

par(X) =

dim(X)∑
k=0

#{k-cells of X} (mod 2)

is Whitehead invariant.

(We choose not to count the (−1)-cell Ø.)

Proof. Exactly two cells are removed at each elementary collapse. �

Example 4.8. The hollow triangle and the point

∂B2 = {Ø, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}} and B0 = {Ø, {0}}
are not Whitehead equivalent because par(∂B2) = 0 whereas par(B0) = 1.

Proposition 4.9. The Euler characteristic

χ(X) =

dim(X)∑
k=0

(−1)k#{k-cells of X}

is Whitehead invariant.
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Proof. Exactly two cells of adjacent dimensions are removed at each elementary collapse.
Their contributions to the Euler characteristic cancel. �

Example 4.10. The hollow triangle ∂B2 and the hollow tetrahedron ∂B2 are not Whitehead
equivalent because χ(∂B2) = 3− 3 = 0 whereas χ(∂B3) = 4− 6 + 4 = 2.

Remark. Notice that the Euler characteristic is an integer lift of the parity invariant and
therefore a more discriminating invariant. We will shortly see that the Euler characteristic
itself can be ‘lifted’ to an invariant sequence of nonnegative integers b = (b0, b1, b2, . . . ) that
is more discriminating still.

Lecture 9

4.4. Simplicial homology. Let X be a simplicial complex. In this section we define the
simplicial homology of X. As usual we will work with a field F. We will construct a sequence
of vector spaces Hk(X) = Hk(X;F).

Note. In general we can work over any commutative ring, and obtain modules over that ring.

Definition 4.11. We define Ck(X), the space of k-chains in X, as follows:

• There is a generator [a0, a1, . . . , ak] for any (k+ 1)-tuple of vertices for which the set
{a0, a1, . . . , ak} belongs to X.

• There is a relation [a0, a1, . . . , ak] = 0 whenever two of the ai are equal. Briefly, we
express this relation as

[. . . , a, . . . , a, . . . ] = 0.

• There is a relation [a0, a1, . . . , ak] = −[a′0, a
′
1, . . . , a

′
k] whenever the lists (ai) and (a′i)

differ by a single transposition. Briefly, we express this relation as

[. . . , a, . . . , b, . . . ] = −[. . . , b, . . . , a, . . . ],

the ellipses representing sequences that are the same on both sides of the equation.

Note. The ‘repeated term’ relation follows from the ‘transposition’ relation except when char(F) = 2. We

include it to cover that case also. It turns out to be more convenient to allow repeated vertices and set those

generators to be zero, than to ban repeated vertices and have to work carefully to avoid getting them by

accident. It does mean that we have to check one more thing every time we define a linear map, but this is

usually quite easy.

For an arbitrary permutation π of {0, 1, . . . , k} we obtain

[a0, a1, . . . , ak] = (−1)π[aπ(0), aπ(1), . . . , aπ(k)]

by expressing π as a product of transpositions. It follows that

dim Ck(X) = #{k-simplices of X}.
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Definition 4.12. The boundary map ∂k : Ck+1(X)→ Ck(X) is defined on generators by

∂k[a0, . . . , ak+1] =
k+1∑
i=0

(−1)i[. . . , âi, . . . ]

where [. . . , âi, . . . ] is an abbreviation for [a0, . . . , ai−1, ai+1, . . . , ak+1], which is the result of
deleting ai from [a0, . . . , ak+1].

We confirm that the definition of ∂ respects both relations:

Consider a generator with repeated vertices in positions i, j with i < j. All but two terms
of its boundary are immediately zero, by the repeated-term relation. We then have

∂[. . . , a, . . . , a, . . . ] = (−1)i[. . . , . . . , a, . . . ] + (−1)j [. . . , a, . . . , . . . ]

= (−1)i[. . . , . . . , a, . . . ] + (−1)j(−1)j−i−1[. . . , . . . , a, . . . ] = 0

since we need j − i− 1 transpositions to make the second term look like the first term.

Consider two generators which differ by a transposition of positions i, j with i < j. Then

∂[. . . , a, . . . , b, . . . ] = (−1)i[. . . , . . . , b, . . . ] + (−1)j [. . . , a, . . . , . . . ] + (k − 1 other terms)

∂[. . . , b, . . . , a, . . . ] = (−1)j [. . . , b, . . . , . . . ] + (−1)i[. . . , . . . , a, . . . ] + (k − 1 other terms)

The two sets of “k−1 other terms” are immediately equal and opposite, by the transposition
relation. The same is true for the first two pairs of terms by the following calculations:

(−1)j [. . . , b, . . . , . . . ] = (−1)j(−1)j−i−1[. . . , . . . , b, . . . ] = −(−1)i[. . . , . . . , b, . . . ]

(−1)i[. . . , . . . , a, . . . ] = (−1)i(−1)j−i−1[. . . , a, . . . , . . . ]= −(−1)j [. . . , a, . . . , . . . ]

Thus
∂[. . . , b, . . . , a, . . . ] = −∂[. . . , a, . . . , b, . . . ].

These checks are generally quite easy to carry out by inspection, but they can be awkward
to write down formally. We will sometimes give the details and sometimes not.

Proposition 4.13. The boundary maps satisfy ∂2 = 0, that is ∂k∂k+1 = 0 for all k ≥ 0.

Proof. For any generator [a0, a1, . . . , ak+2] the double boundary is a linear combination of
terms of the form [. . . , âi, . . . , âj, . . . ]. Each such term occurs in exactly two ways

[. . . , ai, . . . , aj, . . . ]
(−1)i

// [. . . , âi, . . . , aj, . . . ]
(−1)j−1

// [. . . , âi, . . . , âj, . . . ]

[. . . , ai, . . . , aj, . . . ]
(−1)j

// [. . . , ai, . . . , âj, . . . ]
(−1)i

// [. . . , âi, . . . , âj, . . . ]

which sum to an overall coefficient of (−1)i(−1)j−1 + (−1)j(−1)i = 0. �

Thus we have a chain complex, the simplicial chain complex of X.

Definition 4.14. The simplicial homology of X is defined in each dimension k ≥ 0 to be
the vector space

Hk(X) = Hk(C∗(X))

obtained by applying the homology functor Hk to the simplicial chain complex of X.
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Definition 4.15. The Betti vector of X is the sequence

b = (b0, b1, b2, . . . )

of Betti numbers
bk = bk(X) = dim Hk(X).

Note. If k ≥ dim(X) then Ck(X) = 0 and therefore Hk(X) = 0 and bk(X) = 0.

Example 4.16. The Betti vector of the empty complex is (0, 0, 0, . . . ).

Example 4.17. Let En be a simplicial complex with n vertices and no higher-dimensional
simplices. It’s simplicial chain complex is isomorphic to

Fn 0oo 0oo 0oo . . .oo

so H0(En) ∼= Fn and Hk(En) = 0 for k > 0. Thus b(En) = (n, 0, 0, 0, . . . ).

A familiar argument (using mass functions and paths) gives the next result:

Proposition 4.18. The zeroth Betti number b0(X) is equal to the number of connected
components of X, as defined in Propostion 4.5. �

Proposition 4.19. The cycle Cn with vertices 1, 2, . . . , n and edges

{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}
has Betti vector b(Cn) = (1, 1, 0, 0, 0, . . . ).

Proof. There is one connected component, so b0 = 1; and bk = 0 for k ≥ 2 trivially. Finally,
each 1-cycle must be a scalar multiple of

[1, 2] + [2, 3] + · · ·+ [n− 1, n] + [n, 1]

because the cycle condition implies that adjacent edges occur with the same coefficient. Since
there are no 2-simplices we have B1 = 0 and therefore b1 = dim H1 = dim Z1 = 1. �

Proposition 4.20. The Betti vector of a cone is (1, 0, 0, 0, . . . ).

(In other words, a cone has the same homology as a point. A cone is a ‘homology point’.)

Proof. Every vertex is connected to the cone point ∗, so b0 = 1. Now consider the chain
homotopy K defined by the maps

Kk : Ck → Ck+1; [a0, . . . , ak] 7→ [∗, a0, . . . , ak]

It is immediate that this definition is consistent with the repeated-term and transposition
relations, so this is a well-defined map for all k. Now let k ≥ 1. One calculates easily that

(∂K +K∂)[a0, . . . , ak] = [a0, . . . , ak]

for every generator [a0, . . . , ak] of Ck, so if γ is a k-cycle we have

γ = (∂K +K∂)γ = ∂Kγ.

Thus Zk = Bk and so Hk = 0. �
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We now contrive to make the homology of a point (or a cone) even more simple than it is.

Definition 4.21. The augmented chain complex of a simplicial complex X is obtained
from the simplicial chain complex by placing a copy of the field F in dimension −1 and
defining ∂−1 = µ, the mass function:

F C0(X)
µoo C1(X)

∂0oo C2(X)
∂1oo . . .

∂2oo

The reduced homology ofX is defined to be the homology of the augmented chain complex.
Thus we have a vector space, written H̃k(X), for every k ≥ −1. We write b̃k(X) for the
corresponding ‘reduced’ Betti numbers.

The empty simplicial complex E has augmented chain complex

F 0oo 0oo 0oo . . .oo

and therefore b̃−1(E) = 1 and b̃k(E) = 0 otherwise. Now suppose that X is not the empty
complex. Then:

• b̃−1(X) = 0, since the map µ is surjective.

• b̃0(X) = b0(X)−1, because the space of 0-cycles is one dimension smaller in reduced
homology, while the space of 0-boundaries remains unchanged.

• b̃k(X) = bk(X) otherwise, since k-chains and k-boundaries are unchanged for k ≥ 1.

Example 4.22. The reduced Betti numbers of a cone are all zero.

Plan. Over the next few sections, one of our goals is to show that simplicial homology is Whitehead

invariant. This can be done by directly comparing the chain complexes for X and Y whenever X ↘ Y .

The two chain complexes can be shown to be chain-homotopy equivalent. This is not too difficult, but we

will take a different approach. We will instead spend some time developing some of the classic machinery of

homology theory. We will show how simplicial homology is functorial, we will define the relative homology

of a pair of simplicial complexes, and we will construct the long exact sequence of such a pair. When this is

done, it will be very easy to show that simplicial homology is preserved by elementary collapses.

4.5. Simplicial maps. Let X, Y be simplicial complexes on the respective vertex sets
V (X), V (Y ).

Definition 4.23. A simplicial map from X to Y is a function f : VX → VY which carries
simplices to simplices. In other words,

σ = {a0, a1, . . . , ak} ∈ X ⇒ f(σ) = {f(a0), f(a1), . . . , f(ak)} ∈ Y.
Note that f(σ) need not have the same cardinality as σ, because f need not be injective.

Thus we get a category Simp whose objects are simplicial complexes and whose arrows
are simplicial maps. We generally write f : X → Y for an arrow in this category, with the
understanding that there is an underlying function f : V (X) → V (Y ). Composition and
identities are defined in terms of the underlying map.

We can now make simplicial homology functorial.
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Definition 4.24. Let X
f // Y be an arrow in Simp. We define a chain map

C∗(X)
C∗[f ]

// C∗(Y )

by the formula

Ck[f ] : [a0, a1, . . . , ak] 7−→ [f(a0), f(a1), . . . , f(ak)]

in each dimension k.

(It is immediate that this definition is consistent with the repeated-term and transposition relations, and

that the linear maps Ck[f ] together constitute a chain map.)

Then in each dimension k there is a linear map

Hk(X)
Hk[f ]

// Hk(Y )

induced by the chain map C∗[f ]. In this way, each Hk is a functor.

Example 4.25. —do an example—

Plan (continued). The Whitehead invariance of simplicial homology can be expressed in sharper form.

Suppose X ↘ Y . Then Y = X − {σ, τ} is a subcomplex of X. Let Y
i // X be the inclusion map. The

sharp form of Whitehead invariance asserts that the linear map

Hk(Y )
Hk[i] // Hk(X)

is an isomorphism. In other words, the isomorphism between Hk(Y ) and Hk(X) is specified.

4.6. Relative homology.

4.7. The long exact sequence of a pair. In this section we encounter a particularly
famous theorem in homological algebra. There are many theorems of this general flavour.

A short exact sequence (ses) of vector spaces is an exact sequence of the following
form:

0 // A
p // B

q // C // 0

We can break this down into several separate statements:

• The composite qp is zero.

• Exactness at A means that p is injective. Thus A is isomorphic to p(A).

• Exactness as C means that q is surjective. Thus C is isomorphic to B/q−1(0).

• Exactness at B means that p(A) = q−1(0). Thus C ∼= B/p(A).
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This last boxed statement is the point of short exact sequences. If U is a subspace of V and
V/U is the quotient space, then there is a ses

0 // U
j // V

q // V/U // 0

where j is the inclusion and q is the quotient map. Conversely, the discussion above indicates
that every ses is isomorphic to a ses of this type.

A ses of chain complexes is a diagram of chain complexes

0 // A∗
P // B∗

Q // C∗ // 0

which restricts to a ses of vector spaces at each index k. We can draw this as a vast
commuting diagram

...

��

...

��

...

��
0 // Ak+1

Pk+1 //

��

Bk+1

Qk+1 //

��

Ck+1
//

��

0

0 // Ak
Pk //

��

Bk
Qk //

��

Ck //

��

0

0 // Ak−1

Pk−1 //

��

Bk−1

Qk−1 //

��

Ck−1
//

��

0

...
...

...

where the vertical maps are the boundary maps and each row is a ses.

Theorem 4.26. A short exact sequence of chain complexes gives rise to a long exact sequence

. . . // Hk+1(C∗)
∂ // Hk(A∗)

Hk[P ]
// Hk(B∗)

Hk[Q]
// Hk(C∗)

∂ // Hk−1(A∗) // . . .

where the maps ∂, to be defined in the proof, are called connecting homomorphisms.

In many cases our chain complexes stop at k = 0. This means that the rows of our vast
commuting diagram are zero for negative indices and the les terminates in the following
terms:

. . . // H1(C∗)
∂ // H0(A∗)

H0[P ]
// H0(B∗)

H0[Q]
// H0(C∗) // 0

Remark. Theorems like this are proved using a technique called ‘diagram-chasing’. It is often
easier to explain the arguments in real time than to write them down. It is also often easier
to reconstruct the arguments oneself than to follow a written version.

“Proof. This is a routine diagram-chase. �”

is a common substitute for a written-out proof.
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Proof. To establish the theorem one must

(i) construct ∂,

and then verify the relations

(ii) Hk[P ] ◦ ∂ = 0, (ii′) ker Hk[P ] ⊆ im ∂,

(iii) Hk[Q] ◦ Hk[P ] = 0, (iii′) ker Hk[Q] ⊆ im Hk[P ],

(iv) ∂ ◦ Hk[Q] = 0, (iv′) ker ∂ ⊆ im Hk[Q].

We address each item in turn. (Items (iii) and (iii)′ are independent of (i).)

(i) To construct ∂ : Hk+1(C∗)→ Hk(A∗), we work with part of the diagram:

Bk+1

∂
��

Q // Ck+2

∂
��

Ak+1
P //

∂
��

Bk+1
Q //

∂
��

Ck+1

∂
��

Ak
P //

∂
��

Bk
Q //

∂
��

Ck

Ak−1
P // Bk−1

All subscripts have been stripped from the maps, and the leading and trailing zero spaces have
been omitted. We remember that the maps P are injective and the maps Q are surjective.

Consider a cycle γ ∈ Ck+1. Since Q is surjective we can find a ‘lift’ β ∈ Bk+1 with γ = Qβ.
Then Q∂β = ∂Qβ = ∂γ = 0 so by exactness there is a unique α ∈ Ak such that ∂β = Pα.
Moreover, ∂α = 0 since P is injective and P∂α = ∂Pα = ∂∂β = 0. See Figure 1 (left).

The choice of lift of γ need not be unique. Suppose we pick a different lift β′ and obtain α′.
Since Q(β′ − β) = γ − γ = 0, it follows from exactness that there exists α̂ ∈ Ak+1 with
Pα̂ = β′ − β. Then P∂α̂ = ∂P α̂ = ∂(β′ − β) = P (α′ − α), and the injectivity of P implies
∂α̂ = α′ − α. See Figure 1 (middle).

The upshot is that the homology class [α] ∈ Hk(A∗) is uniquely defined for any given cycle
γ ∈ Zk+1(C∗) by the procedure above.

The function γ 7→ [α] is linear. Indeed, if γ1, γ2 ∈ Zk+1(C∗) have respective lifts β1, β2

which yield cycles α1, α2, then for γ1 + γ2 we can take β1 + β2 as its lift and obtain the cycle
α1 + α2. A similar argument works for scalar multiplication.

Finally, we show that [α] ∈ Hk(A∗) depends only on the homology class [γ] ∈ Hk+1(C∗).

Consider a boundary ∂γ̂ ∈ Bk+1(C∗) obtained from some γ̂ ∈ Ck+2(C∗). For any lift β̂ of γ̂,

we have Q∂β̂ = ∂Qβ̂ = ∂γ̂ which means that ∂β̂ is a lift of ∂γ̂. But now ∂∂β̂ = 0 so the
resulting α is also zero. See Figure 1 (right).
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• •

• β
_

��

� // γ
_

��
α_

��

� // ∂β
_

��

� // 0

∂α � // 0

• •

α̂ � //
_

��

β′ − β
_

��

� // 0_

��
∂α̂ � // ∂β′ − ∂β •

• •

β̂
_

��

� // γ̂
_

��
• ∂β̂

_

��

� // ∂γ̂

0 � // 0 •

• •

Figure 1. The construction of the connecting homomorphism: (left) given
a cycle γ ∈ Zk+1(C∗) and a lift β ∈ Ck+1(B∗) we obtain a cycle α ∈ Zk(A∗);
(middle) the homology class [α] ∈ Hk(A∗) is independent of the choice of lift β;
(right) the homology class [α] ∈ Hk(A∗) depends only on the homology class
[γ] ∈ Hk+1(C∗).

Putting these statements together, it follows that we have a well defined linear map

Hk+1(C∗)→ Hk(A∗), [γ] 7→ [α]

and this is the connecting homomorphism we seek.

(ii) Suppose [α] = ∂[γ]. By construction, Hk[P ] carries [α] to [Pα] = [∂β] = 0.

(ii)′ Suppose Hk[P ] carries [α] to 0, so [Pα] = [0]. This means that Pα = ∂β for some
β ∈ Ck+1(B∗). Then γ = Qβ is a cycle, because ∂γ = ∂Qβ = Q∂β = QPα = 0. Now we
have reproduced the configuration of Figure 1, and so [α] = ∂[γ].

(The next two items, (iii) and (iii)′ are independent of (i), and could have been verified at the outset.)

(iii) Since Hk is a functor, we have Hk[Q]◦Hk[P ] = Hk[QP ] = Hk[0] and this is equal to zero.

(iii)′ Suppose Hk[Q] carries [β] ∈ Hk(B∗) to zero, so Qβ = ∂γ̂ for some γ̂ ∈ Ck+1(C∗), and

we can take a lift β̂ ∈ Ck+1 so that γ̂ = Qβ̂. Then Q∂β̂ = ∂Qβ̂ = ∂γ̂ = Qβ, so that

Q(β−∂β̂) = 0. Exactness now implies that there exists α ∈ Ck(A∗) such that Pα = β−∂γ̂,

and moreover ∂α = 0 because P is injective and P∂α = ∂Pα = ∂(β − ∂β̂) = 0. Thus we

have [α] ∈ Hk(A∗) which is carried by Hk[P ] to [Pα] = [β − ∂β̂] = [β].

(iv) Let [Qβ] be the image under Hk[Q] of some [β] ∈ Hk(B∗). We can construct [α] = ∂[Qβ]
in the usual way, choosing β as the lift of Qβ. But β is a cycle, so ∂β = 0 and so α = 0.

(iv)′ Suppose ∂[γ] = [α] = 0 for some [γ] ∈ Hk+1(C∗). We may suppose that Pα = ∂β for
some lift β ∈ Ck+1(B∗) of γ. Now [α] = 0 implies that α = ∂α̂ for some α̂ ∈ Ck+1(A∗). Now
QPα̂ = 0 and ∂P α̂ = P∂α̂ = Pα = ∂B. It follows that Q(β −Pα̂) = γ and ∂(β −Pα̂) = 0.
Thus we have a homology class [β − Pα̂] ∈ Hk(B∗) which is carried by Hk[Q] to [γ].

This completes the proof of the theorem. �
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Theorem 4.27 (The les of a pair). Let X, Y be simplicial complexes with Y ⊆ X. Let i, j
denote the inclusion maps

Y
i // X

j // (X, Y ).

Then there is a long exact sequence

. . . // Hk+1(X, Y )
∂ // Hk(Y )

Hk[i]
// Hk(X)

Hk[j]
// Hk(X, Y )

∂ // Hk−1(Y ) // . . .

relating the homology of X and Y and the relative homology of (X, Y ).

Proof. Apply Theorem 4.26 to the following tautological ses of chain complexes

0 // C∗(Y ) // C∗(X) // C∗(X)/C∗(Y ) // 0

and recall the definition C∗(X, Y ) = C∗(X)/C∗(Y ). �

Here is the theorem we have been aiming for:

Theorem 4.28 (Whitehead invariance of simplicial homology). Let X, Y be simplicial com-

plexes with X ↘ Y and let Y
i // X denote the inclusion map. Then

Hk(X)
Hk[i]

// Hk(Y )

is an isomorphism for all k.

Proof. We first show that Hk(X, Y ) = 0 for all k. Recall that Y = X −{σ, τ} where σ is the
unique coface of τ . Thus the chain complex C∗(X, Y ) is isomorphic to

0 . . .oo 0oo Foo F
∼=oo 0oo . . .oo

with a single generator in each of the dimensions dim(τ) and dim(σ) = dim(τ) + 1, and a
nonzero boundary map between them. Evidently Hk(X, Y ) = 0 in all dimensions.

It follows that the les for (X, Y ) contains the following excerpt, for every k:

. . . // 0 // Hk(Y )
Hk[i]

// Hk(X) // 0 // . . .

Exactness now implies that each Hk[i] is an isomorphism. �

Some calculations run more quickly in reduced homology. Here is the appropriate adaptation of Theo-

rem 4.27. The content of the result is identical except that H0(X),H0(Y ) are replaced by H̃0(X), H̃0(Y ).

Theorem 4.29 (The les of a pair, reduced homology). Under the same circumstances as
Theorem 4.27, there is a long exact sequence

. . . // Hk+1(X, Y )
∂ // H̃k(Y )

H̃k[i]
// H̃k(X)

H̃k[j]
// Hk(X, Y )

∂ // H̃k−1(Y ) // . . .

in reduced homology.
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Proof. We must verify that the sequence of chain complexes is exact.

0 // C̃∗(Y )
C̃∗[i] // C̃∗(X)

C̃∗[j] // C∗(X)/C∗(Y ) // 0 .

In fact, the sequence is equal to the ses for the unreduced case in all rows except k = −1.
The row k = −1 is by definition equal to

0 // F 1 // F // 0 // 0

and is therefore also exact. �

Example 4.30. For n ≥ 0, the reduced homology of a hollow n-simplex is as follows:

H̃k(∂Bn) ∼=

{
F for k = n− 1

0 for k 6= n− 1

Proof. Let X = ∂Bn and let Y = X − σ, where σ is a simplex of dimension n − 1. Notice
that Y is isomorphic to a cone C(∂Bn−1). Thus H̃k(Y ) = 0 for all k, and so the snippet

. . . // 0 // H̃k(X) // Hk(X, Y ) // 0 // . . .

from the reduced-homology les implies that H̃k(X) ∼= Hk(X, Y ) for all k. The latter is easy
to compute: the chain complex C∗(X, Y ) has one generator in dimension n− 1 and no other
generators, so the homology is 1-dimensional in dimension n− 1 and zero elsewhere. �

Note. We can immediately deduce the unreduced homology of ∂Bn from this, following the discussion at
the end of Section 4.4. The following comparison of reduced and unreduced Betti vectors indicates why
reduced homology is marginally more convenient for this calculation.

b̃(∂B0) = [1; 0, 0, 0, 0, 0, . . . ], b(∂B0) = [0, 0, 0, 0, 0, . . . ].

b̃(∂B1) = [0; 1, 0, 0, 0, 0, . . . ], b(∂B1) = [2, 0, 0, 0, 0, . . . ].

b̃(∂B2) = [0; 0, 1, 0, 0, 0, . . . ], b(∂B2) = [1, 1, 0, 0, 0, . . . ].

b̃(∂B3) = [0; 0, 0, 1, 0, 0, . . . ], b(∂B3) = [1, 0, 1, 0, 0, . . . ].

b̃(∂B4) = [0; 0, 0, 0, 1, 0, . . . ], b(∂B4) = [1, 0, 0, 1, 0, . . . ].

(For the reduced Betti vectors, the term b̃−1 is listed before the semicolon.)

Lecture 10

4.8. Contiguous maps.

4.9. Vietoris–Rips complexes.
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