2.1 Symmetrization

For any function class F, we define the empirical Rademacher complexity of F to be:

$$\tilde{R}_n(G) := \mathbb{E}_\epsilon \left(\sup_{f \in F} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(x_i) \right| \right)$$

where the expectation is on the Rademacher sequence $\{\epsilon_i, i \in [n]\}$ conditionally on the data $\{x_1, \ldots, x_n\}$.

Problem 1

Consider the functional class $F = \{x \rightarrow \text{sign}(\langle \theta, x \rangle) \mid \theta \in \mathbb{R}^d, \|\theta\|_2 = 1\}$, corresponding to the $\{-1, +1\}$-valued classification rules defined by linear functions in \mathbb{R}^d. Suppose $d \geq n$ so that it is possible to have $x_n^* = \{x_1, \ldots, x_n\}$ that is a collection of vectors in \mathbb{R}^d that are linearly independent. For such an x_n^*, show that

$$\mathbb{E}_\epsilon \left(\sup_{f \in F} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(x_i) \right| \right) = 1.$$

2.2 VC dimension

Problem 2

Let A be a finite class of sets (i.e., $|A| < \infty$). Determine upper bounds of $\Pi_A(n)$ and $\nu(A)$. Provide an example for which your upper bounds are tight.

Problem 3

Determine the VC dimensions of the following classes of sets:

(a) The class of sets in \mathbb{R}^d:

$$A := \{(-\infty, a_1] \times (-\infty, a_2] \times \cdots \times (-\infty, a_d] \mid (a_1, \ldots, a_d) \in \mathbb{R}^d\}.$$
(b) The class of sets in \mathbb{R}^d:
\[A := \{(b_1, a_1) \times (b_2, a_2) \times \cdots \times (b_d, a_d) \mid (a_1, \ldots, a_d), (b_1, \ldots, b_d) \in \mathbb{R}^d\}. \]

Problem 4

Determine the VC dimensions of the following classes of sets:

(a) A half-space is defined to be a set of the form \(\{x \in \mathbb{R}^d : \langle x, u \rangle \leq c \} \) for some fixed \(u \in \mathbb{R}^d \) and \(c \in \mathbb{R} \). Show that the collection of all half-spaces in \(\mathbb{R}^d \) is a VC-class of index \(d + 1 \).

(b) The class of all closed balls in \(\mathbb{R}^2 \), that is, \(A \) is the class of all subsets of the form
\[\left\{ x \in \mathbb{R}^2 \mid \sum_{i=1}^{2} (x_i - a_i)^2 \leq R, \text{ for some } (a_1, a_2) \in \mathbb{R}^2 \text{ and } R > 0 \right\}. \]

2.3 VC-subgraph

Problem 5

Prove the following example in Lecture note 2: Suppose \(C \) is a VC class of index \(\nu(C) \), then by definition the class of functions \(F := \{1_C : C \in C\} \) is VC subgraph of index \(\nu(C) \).

Problem 6 (Problem 10 on Page 152 in VW1996)

For a set \(F \) of measurable functions, define “closed” and “open” subgraphs by \(\{(x, t) : t \leq f(x)\} \) and \(\{(x, t) : t < f(x)\} \) respectively. Show that the collections of “closed” and “open” subgraphs have the same VC-index.

Problem 7 (Problem 20 on Page 153 in VW1996)

The class of functions of the form \(x \rightarrow c1_{(a,b]}(x) \) with \(a, b, c > 0 \) ranging over \(\mathbb{R} \) is VC-subgraph. Determine the index.

Problem 8 (Problem 21 on Page 153 in VW1996)

The “Box-Cox family of transformations” \(F := \{f_\lambda : (0, \infty) \to \mathbb{R} : \lambda \in \mathbb{R} - \{0\}\} \), with \(f_\lambda(x) := (x^\lambda - 1)/\lambda \) is a VC-subgraph class.
Problem 9

Prove Lemma 23 in the lecture note 2.