Conditional Modelling of Extreme Wind Gusts by Bivariate Brown-Resnick Processes

Martin Schlather
University of Mannheim

joint work with
Felix Ballani, Petra Friederichs, Marco Oesting,
Kirstin Strokorb, Chen Zhou

PASI Winter School 2014
June 24, 2014, Buzios
Recall the talks by D. Cooley and M. Ribatet

Extreme value theory

- **Generalized Extreme Value (GEV) Distribution**
 - limit law of i.i.d. maxima
 - annual maxima

- **Generalized Pareto Distribution**
 - exceedances over high thresholds
 - tail equivalent to GEV

- **Max-stable processes**
 - spatial concept of extremes
 - statistical inference
Outline

1. Construction of max-stable processes
2. Tail correlation functions
3. Weather forecasting
4. Data
5. Marginal Model
6. Dependence Model
7. Application to Data
Spectral Representation (de Haan, 1984)

- \(K \subset \mathbb{R}^d \) compact
- \(\mathcal{H} \): space of spectral functions \(K \rightarrow [0, \infty) \) with measure \(H \)
- \(\Pi = \sum \delta(u_i, v_i) \): Poisson point process on \((0, \infty) \times \mathcal{H}\) with intensity \(u^{-2} du \cdot H(df) \)

\[
X(t) = \max_{i \in \mathcal{N}} U_i V_i(t), \quad t \in K
\]
Spectral Representation (de Haan, 1984)

- $K \subset \mathbb{R}^d$ compact
- \mathcal{H}: space of spectral functions $K \to [0, \infty)$ with measure H
- $\Pi = \sum \delta(u_i, v_i)$: Poisson point process on $(0, \infty) \times \mathcal{H}$ with intensity $u^{-2} du \cdot H(df)$

\[
X(t) = \max_{i \in \mathcal{N}} U_i V_i(t), \quad t \in K
\]
Spectral Representation (de Haan, 1984)

- $K \subset \mathbb{R}^d$ compact
- \mathcal{H}: space of spectral functions $K \rightarrow [0, \infty)$ with measure H
- $\Pi = \sum \delta(u_i, v_i)$: Poisson point process on $(0, \infty) \times \mathcal{H}$ with intensity $u^{-2} du \cdot H(df)$

$$X(t) = \max_{i \in \mathcal{N}} U_i V_i(t), \quad t \in K$$
Spectral Representation (de Haan, 1984)

- $K \subset \mathbb{R}^d$ compact
- \mathcal{H}: space of spectral functions $K \rightarrow [0, \infty)$ with measure H
- $\Pi = \sum \delta(u_i, v_i)$: Poisson point process on $(0, \infty) \times \mathcal{H}$ with intensity $u^{-2} du \cdot H(df)$

$$X(t) = \max_{i \in \mathcal{N}} U_i V_i(t), \quad t \in K$$
Spectral Representation (de Haan, 1984)

- $K \subset \mathbb{R}^d$ compact
- \mathcal{H}: space of spectral functions $K \rightarrow [0, \infty)$ with measure H
- $\Pi = \sum \delta(u_i, v_i)$: Poisson point process on $(0, \infty) \times \mathcal{H}$ with intensity $u^{-2} \, du \cdot H(df)$

$$X(t) = \max_{i \in \mathcal{N}} U_i V_i(t), \quad t \in K$$
Moving Maxima (e.g. Smith Process, 1990)

- \(\sum_{i \in \mathcal{N}} \delta(u_i, s_i) \): Poisson point process on \((0, \infty) \times \mathbb{R}^d\) with intensity \(u^{-2} du \times ds\)
- \(F\): deterministic “shape function”

\[
X(t) = \max_{i \in \mathcal{N}} (U_i \cdot F(t - S_i))
\]

\(\sim\) spectral functions are shifted shape functions \(F(\cdot - S_i)\)
What do these pictures have in common?
Tail correlation function (TCF)

\[X = \{X(t)\}_{t \in \mathbb{R}^d}: \text{a stationary stochastic process} \]

\[\chi(t) := \lim_{x \to x^*} \mathbb{P}(X_t > x \mid X_0 > x), \quad t \in \mathbb{R}^d. \]

(provided limits exist; \(x^* \) = upper endpoint)

Comments

- correlation function for tail dependence
- invariant under continuous isotonic marginal transformations
- different names in the literature:
 - (upper) tail dependence coefficient [Beirlant et al. '04, Davis/Mikosch '09, Falk '05]
 - \(\chi \)-measure [Beirlant et al. '04, Coles et al. '99]
 - extremal coefficient function [Fasen et al. '10]
 - …

- estimable by \(F \)-madogram (Cooley, Naveau & Poncet, 2006)
Properties

\(\chi(t) = \lim_{x \to x^*} \mathbb{P}(X_t > x | X_o > x), \quad t \in \mathbb{R}^d \)

- \(\chi \) is positive semidefinite (a non-negative correlation function):
 \[
 \sum_{i=1}^{n} \sum_{j=1}^{n} a_i \chi(t_i - t_j) a_j \geq 0, \quad \forall (t_1, \ldots, t_n) \in (\mathbb{R}^d)^n, \quad \forall (a_1, \ldots, a_n) \in \mathbb{R}^n.
 \]

- \(\chi \) satisfies further inequalities:
 \[
 \chi_{ij} \geq 0 \\
 \chi_{ij} + \chi_{ik} - \chi_{jk} \leq 1 \\
 (\chi_{ij} + \chi_{ik} + \chi_{il}) - (\chi_{jk} + \chi_{jl} + \chi_{kl}) \leq 1
 \]
 \(\forall (t_i, t_j, t_k, t_l) \in (\mathbb{R}^d)^4 \)
 with \(\chi_{ij} = \chi(t_i - t_j) \).

[Davis/Mikosch '09, S./Tawn '03, Strokorb '13]
Example: Parametric families

Powered Exponential

\[\rho_{\alpha}(r) = \exp(-r^{\alpha}) \]

Whittle-Matérn

\[\rho_{\alpha}(r) = \frac{2^{1-\alpha}}{\Gamma(\alpha)} r^{\alpha} K_{\alpha}(r) \]

Cauchy

\[\rho_{\alpha,\beta}(r) = (1 + r^{\alpha})^{-\beta} \]

CF for \(\alpha \in (0, 2] \)

CF for \(\alpha \in (0, \infty) \)

CF for \(\alpha \in (0, 2] \) (for all \(\beta > 0 \))
Example: Parametric families

Powered Exponential
\[\rho_\alpha(r) = \exp(-r^\alpha) \]

Whittle-Matérn
\[\rho_\alpha(r) = \frac{2^{1-\alpha}}{\Gamma(\alpha)} r^\alpha K_\alpha(r) \]

Cauchy
\[\rho_{\alpha,\beta}(r) = (1 + r^\alpha)^{-\beta} \]

CF for \(\alpha \in (0, 2] \)

CF for \(\alpha \in (0, \infty) \)

CF for \(\alpha \in (0, 2] \) (for all \(\beta > 0 \))

TCF for \(\alpha \in (0, 1] \)

TCF for \(\alpha \in (0, 0.5] \)

TCF for \(\alpha \in (0, 1] \) (for all \(\beta > 0 \))
Construction

- Moving maxima process:

\[X(t) = \max_{(u,s) \in \Pi} u F(t - s) \]

\(\Pi \) a Poisson point process with intensity \(u^{-2} \, du \, ds \)

- Deterministic shape function \(F \) in \(\mathbb{R}^3 \),

\[F(t) = \frac{1 + 4 \|t\|}{\pi^{3/2} \|2t\|^{5/2}} e^{-2\|t\|} \]

- Background picture is the 2-dimensional cross-section of a 3-dimensional realisation of \(\log(X) \)
Properties

- tail correlation function equals

\[\chi(h) = \lim_{x \to x^*} \mathbb{P}(X(h) > x \mid X(0) > x) = \text{erfc}(\sqrt{\|h\|}) \]

where \(\text{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-y^2} \, dy \)
Properties

- tail correlation function equals

\[
\chi(h) = \lim_{x \to x^*} \mathbb{P}(X(h) > x \mid X(0) > x) = \text{erfc}(\sqrt{\|h\|})
\]

where \(\text{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-y^2} \, dy\)

I.e., identical to the (classical) Brown-Resnick process.
Background picture, part II

Properties

- tail correlation function equals

\[\chi(h) = \lim_{x \to x^*} \mathbb{P}(X(h) > x \mid X(0) > x) = \text{erfc}(\sqrt{\|h\|}) \]

where \(\text{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-y^2} \, dy \)

I.e., identical to the (classical) Brown-Resnick process.

- discontinuous everywhere
So, these pictures have the tail correlation function in common!
Numerical weather forecast

System of six partial differential equations
- equations include conservation of momentum, mass, energy and entropy, and equation of state
- two velocity components, density, pressure, temperature, humidity

Deterministic forecasts of future states of the atmosphere
- discretization
- run forward in time

Initial conditions
- data assimilation systems
- describing current state of the atmosphere on a 3d grid
Numerical weather forecast

System of six partial differential equations
- equations include conservation of momentum, mass, energy and entropy, and equation of state
- two velocity components, density, pressure, temperature, humidity

Deterministic forecasts of future states of the atmosphere
- discretization
- run forward in time

Initial conditions
- data assimilation systems
- describing current state of the atmosphere on a 3d grid

Tim Palmer (2000):
Although forecasters have traditionally viewed weather prediction as deterministic, a culture change towards probabilistic forecasting is in progress.
Postprocessing

NWP ensembles are subject to model biases and typically they show a lack of calibration

Univariate postprocessing

- regression based approach (Gneiting et al., 2005) using normal distribution assumptions
- Bayesinan approach (Raftery et al., 2005)

Multivariate and spatial postprocessing

- empirical copula coupling (Schuhlen et al., 2012)
- score functions
Postprocessing of extremes

- ansatz with normal distribution should be replaced by GEV
- empirical copula coupling coupling might be replaced by a spatial model
- quality control essential
- spatial model, hence downscaling, might be worthwhile
Extreme Wind Gusts

- wind gusts are strongly varying in space
- high uncertainty in forecasts, particularly for extreme wind gusts
Extreme Wind Gusts

- wind gusts are strongly varying in space
- high uncertainty in forecasts, particularly for extreme wind gusts

Goal:

Model for the (observed) wind gusts $V_{\text{max}}^{\text{obs}}$ conditional on the forecast $V_{\text{max}}^{\text{pred}}$
Model for Extreme Wind Gusts

Goal:
Model for the (observed) wind gusts $V_{\text{obs}}^{\text{max}}$ conditional on the forecast $V_{\text{pred}}^{\text{max}}$

Two Modelling Steps:
1. model for marginal distributions (at single location) of $V_{\text{max}}^{\text{obs}}$ & $V_{\text{max}}^{\text{pred}}$
2. model for spatial dependence & dependence between observation and prediction
 \sim bivariate stochastic process
The Data

Observation data:
for the maximal wind speed $V_{\text{obs}}^{\text{max}}$
- at 116 DWD stations in Northern Germany
- for 358 days (03/2011 – 02/2012)

Forecast data:
from COSMO-DE EPS on a grid with mesh size 2.8 km covering Germany
- 20 ensemble members
- for the maximal wind speed $V_{\text{pred}}^{\text{max}}$
The Data

Observation data:
for the maximal wind speed $V_{\text{obs max}}$
- at 116 DWD stations in Northern Germany
- for 358 days (03/2011 – 02/2012)

Forecast data:
from COSMO-DE EPS
- on a grid with mesh size 2.8 km covering Germany
- 20 ensemble members
1. for the maximal wind speed $V_{\text{pred max}}$
2. for the mean wind speed
Marginal Model for Wind Speed

(single) wind speed \(V(l, d) \) at location \(l \) and day \(d \):

\[
V(l, d) = d \sqrt{\text{Var}\{V(l, d)\}} V_0 + \mathbb{E}\{V(l, d)\}
\]

with \(V_0 \) following some standardized distribution

“weather parameters” \(\mathbb{E}\{V(l, d)\} \) and \(\text{Var}\{V(l, d)\} \):

- reflect the general weather situation
- contain seasonal effects
- are assumed to be “known” to the forecaster
Marginal Model for Wind Speed

(single) wind speed $V(l, d)$ at location l and day d:

$$V(l, d) = d \sqrt{\text{Var}\{V(l, d)\}} V_0 + \mathbb{E}\{V(l, d)\}$$

with V_0 following some standardized distribution

“weather parameters” $\mathbb{E}\{V(l, d)\}$ and $\text{Var}\{V(l, d)\}$:
- reflect the general weather situation
- contain seasonal effects
- are assumed to be “known” to the forecaster

can be estimated from mean wind ensemble forecast
Marginal Model for Extreme Wind Gusts

(single) wind speed $V(l, d)$ at location l and day d:

$$V(l, d) = d \sqrt{\text{Var}\{V(l, d)\}} V_0 + \mathbb{E}\{V(l, d)\}$$

with V_0 following some standardized distribution

observed single wind speed: 3-second average
observed maximal wind speed: highest 3-second average per day

\sim GEV

maximal wind speed $V_{\text{max}}(l, d)$ at location l and day d:

$$\mathbb{P}\left(\frac{V_{\text{max}}(l, d) - \mathbb{E}\{V(l, d)\}}{\sqrt{\text{Var}\{V(l, d)\}}} \leq x \right) \approx \exp \left(- \left(1 + \frac{x - \mu}{\sigma} \right)^{-1/\xi} \right) = G_{\xi, \mu, \sigma}(x)$$
Marginal Model for Extreme Wind Gusts (cont’d)

Observations

\[
\frac{V_{\text{max}}^{\text{obs}}(l, d) - \mathbb{E}\{V(l, d)\}}{\sqrt{\text{Var}\{V(l, d)\}}} \sim \text{GEV}(\xi^{\text{obs}}, \mu^{\text{obs}}, \sigma^{\text{obs}})
\]

Forecast

\[
\frac{V_{\text{max}}^{\text{pred}}(l, d) - \mathbb{E}\{V(l, d)\}}{\sqrt{\text{Var}\{V(l, d)\}}} \sim \text{GEV}(\xi^{\text{pred}}, \mu^{\text{pred}}, \sigma^{\text{pred}})
\]

GEV parameters \((\xi, \mu, \sigma)\):

- \(\xi\) constant in space in time
- error model allows \(\mu, \sigma\) to vary spatially
- estimated via maximum likelihood
GEV Parameters

Estimates for μ^{obs}

Estimates for μ^{pred}

Estimates for σ^{obs}

Estimates for σ^{pred}
necessity to model spatial prediction and spatial observation together
Intrinsically stationary processes

- **univariate case:**
 - $Y_s(t) = W^{(1)}(t + s) - W^{(1)}(t)$ is (weakly) stationary
 - variogramm γ,
 \[\gamma(t, s) = \text{Var}(W^{(1)}(t) - W^{(1)}(s)) \]
 depends only on the distance vector $t - s$

- **multivariate set up:**
 - different approaches
 - we need that the pseudo-variogram $\gamma(s, t) = (\gamma_{ij}(s, t))_{1 \leq i, j \leq 2}$ with
 \[\gamma_{ij}(s, t) = \text{Var}(W^{(i)}(s) - W^{(j)}(t)) \]
 only depends on $s - t$.
Point Process Construction (Brown & Resnick 1977)

- \(\{U_k, k \in \mathcal{N}\} \): PPP on \(\mathbb{R} \) with intensity measure \(e^{-u} \, du \) (magnitude)
Point Process Construction (Brown & Resnick 1977)

- \(\{ U_k, k \in \mathcal{N} \} \): PPP on \(\mathbb{R} \) with intensity measure \(e^{-u} \, du \) (magnitude)
- \(W(\cdot) \): standard Brownian motion (BM)
 \((W_k(\cdot) - |\cdot|/2) \sim_{i.i.d} (W(\cdot) - |\cdot|/2) \) (spatial course)
Point Process Construction (Brown & Resnick 1977)

\[X(t) = \max_{k \in \mathcal{N}} \left(U_k + W_k(t) - \frac{|t|}{2} \right), \quad t \in \mathbb{R} \]
Point Process Construction (Brown & Resnick 1977)

\[X(t) = \max_{k \in \mathcal{N}} \left(U_k + W_k(t) - \frac{|t|}{2} \right), \quad t \in \mathbb{R} \]
Point Process Construction (Brown & Resnick 1977)

\[
X(t) = \max_{k \in \mathbb{N}} \left(U_k + W_k(t) - \frac{|t|}{2} \right), \quad t \in \mathbb{R}
\]
Point Process Construction (Brown & Resnick 1977)

\[X(t) = \max_{k \in \mathcal{N}} \left(U_k + W_k(t) - \frac{|t|}{2} \right), \quad t \in \mathbb{R} \]
Point Process Construction (Brown & Resnick 1977)

\[X(t) = \max_{k \in \mathcal{N}} \left(U_k + W_k(t) - \frac{|t|}{2} \right), \quad t \in \mathbb{R} \]
\[X(t) = \max_{k \in \mathcal{N}} \left(U_k + W_k(t) - \frac{|t|}{2} \right) \]

\(X \) is max-stable
\[X(t) = \max_{k \in \mathbb{N}} \left(U_k + W_k(t) - \frac{|t|}{2} \right) \]

\(X \) is max-stable and stationary
\[X(t) = \max_{k \in \mathcal{N}} \left(U_k + W_k(t) - \frac{|t|}{2} \right) \]

\(X \) is max-stable and stationary
$X(t) = \max_{k \in \mathcal{N}} \left(U_k + W_k(t) - \frac{|t|}{2} \right)$

X is max-stable and stationary
Generalization

(cf. Kabluchko et al. 2009)

- $\{U_k\}_{k \in \mathbb{N}}$: Poisson point process with intensity $e^{-u} \, du$
- $W(\cdot)$: centered Gaussian process on \mathbb{R}^d s.t.

 \[
 \gamma(s, t) = \text{Var}(W(s) - W(t))
 \]

 depends on $s - t \in \mathbb{R}^d$ only

- $\{W_k(\cdot)\}_{k \in \mathbb{N}}$: independent copies of W
Generalization
(cf. Kabluchko et al. 2009)

- $\{U_k\}_{k\in\mathbb{N}}$: Poisson point process with intensity $e^{-u} \, du$
- $W(\cdot)$: centered Gaussian process on \mathbb{R}^d s.t.

 variogram

 $\gamma(s, t) = \text{Var}(W(s) - W(t))$

 depends on $s - t \in \mathbb{R}^d$ only

- $\{W_k(\cdot)\}_{k\in\mathbb{N}}$: independent copies of W

\[X(t) = \max_{k\in\mathbb{N}} (U_k + W_k(t) - \text{Var}(W_k(t))/2), \quad t \in \mathbb{R}^d, \]

X is called Brown-Resnick process associated to the variogram γ.
Multivariate Generalization
(cf. Stucki & Molchanov, 2013, Oesting et al., 2013)

- $\{U_k\}_{k \in \mathbb{N}}$: Poisson point process with intensity $e^{-u} du$
- $W(\cdot)$: centered Gaussian process s.t.

\[
\text{variogram} \\
\gamma(s, t) = \text{Var}(W(s) - W(t))
\]

depends on $s - t \in \mathbb{R}^d$ only

- $\{W_k(\cdot)\}_{k \in \mathbb{N}}$: independent copies of W

\[
X(t) = \max_{k \in \mathbb{N}} \left(U_k + W_k(t) - \text{Var}(W_k(t))/2 \right), \quad t \in \mathbb{R}^d,
\]

Then,
- X is max-stable and stationary
- law of X depends on γ only
Multivariate Generalization
(cf. Stucki & Molchanov, 2013, Oesting et al., 2013)

- \(\{U_k\}_{k \in \mathcal{N}} \): Poisson point process with intensity \(e^{-u} \, du \)
- \(W(\cdot) = (W^{(1)}(\cdot), W^{(2)}(\cdot)) \): centered Gaussian process s.t. pseudo-variogram
 \[\gamma(s, t) = \text{Var}(W^{(i)}(s) - W^{(j)}(t)) \text{ for } i, j = 1, 2 \]
 depends on \(s - t \in \mathbb{R}^d \) only
- \(\{W_k(\cdot)\}_{k \in \mathcal{N}} \): independent copies of \(W \)

\[X^{(i)}(t) = \max_{k \in \mathcal{N}} \left(U_k + W^{(i)}_k(t) - \text{Var}(W^{(i)}_k(t))/2 \right), \quad t \in \mathbb{R}^d, \ i = 1, 2, \]

Then,
- \(X \) is max-stable and stationary (as bivariate process)
- law of \(X \) depends on \(\gamma \) only
What does a pseudo-variogram look like?

\[
\gamma(s, t) = \text{Var}(W^{(i)}(s) - W^{(j)}(t))_{1 \leq i, j \leq 2}
\]

Question: Can a pseudo-variogram have the form

\[
\gamma(t + h, t) = \begin{pmatrix}
\|h\|^{\alpha} & ? \\
? & \|h\|^{\beta}
\end{pmatrix}, \quad 0 < \alpha \neq \beta \leq 2?
\]
What does a pseudo-variogram look like?

\[\gamma(s, t) = (\text{Var}(W^{(i)}(s) - W^{(j)}(t)))_{1 \leq i, j \leq 2} \]

Question: Can a pseudo-variogram have the form

\[\gamma(t + h, t) = \begin{pmatrix} \|h\|^{\alpha} & \? \\ \? & \|h\|^{\beta} \end{pmatrix}, \quad 0 < \alpha \neq \beta \leq 2? \]

Answer: No!
What does a pseudo-variogram look like? (cont’d)

Theorem (Oesting et al., 2013)

Let $\gamma(s, t)$ a pseudo-variogram that depends on $s - t$ only. Then, γ is of the form

$$
\sqrt{\gamma(t + h, t)} = \begin{pmatrix}
\sqrt{\gamma^*(h)} & \sqrt{\gamma^*(h)} \\
\sqrt{\gamma^*(h)} & \sqrt{\gamma^*(h)}
\end{pmatrix} + \begin{pmatrix}
f_{11}(h) & f_{12}(h) \\
f_{21}(h) & f_{22}(h)
\end{pmatrix}, \quad t, h \in \mathbb{R}^d,
$$

for some univariate variogram γ^* and bounded functions $(f_{ij}(\cdot))_{1 \leq i, j \leq 2}$.

![Graphs showing γ_{11} and γ_{22}](image-url)
Construction Principle:

- $Y(\cdot)$: univariate Gaussian process with stationary increments and variogram γ^*
- $V(\cdot) = (V^{(1)}(\cdot), V^{(2)}(\cdot))$: bivariate stationary Gaussian process with covariance function

 $$C(h) = \begin{pmatrix} C_{11}(h) & C_{12}(h) \\ C_{21}(h) & C_{22}(h) \end{pmatrix}$$

$W(\cdot) = (Y(\cdot) + V^{(1)}(\cdot), Y(\cdot) + V^{(2)}(\cdot))$ has a pseudo-variogram

$$\gamma(h) = (\gamma^*(h) + C_{ij}(0) + C_{jj}(0) - 2C_{ij}(h))_{i,j=1,2}.$$
Reminder:

- Marginals of $V_{\text{max}}^\text{obs}$ and $V_{\text{max}}^\text{pred}$ are modelled by GEVs (parameters estimated MLE).

\[V_{\text{obs max}} \text{(GEV)} \quad V_{\text{pred max}} \text{(GEV)} \]
Reminder:
- Marginals of $V_{\text{max}}^{\text{obs}}$ and $V_{\text{max}}^{\text{pred}}$ are modelled by GEVs (parameters estimated MLE).
- Data are transformed to standard Gumbel margins ($\sim X^{\text{obs}}, X^{\text{pred}}$).
Reminder:
marginals of $V_{\text{max}}^{\text{obs}}$ and $V_{\text{max}}^{\text{pred}}$ are modelled by GEVs (parameters estimated MLE)

data are transformed to standard Gumbel margins ($\sim X^{\text{obs}}, X^{\text{pred}}$)

standardized observation and forecast are jointly modelled by bivariate BR process
 - dependence in space
 - dependence between observations and forecast
Bivariate Variogram Model

$$\gamma(h) = (\gamma^*(h) + C_{ii}(0) + C_{jj}(0) - 2C_{ij}(h))_{i,j=1,2}.$$

- $$\gamma^*$$: variogramm of power law type

$$\gamma^*(h) = \frac{||h||^2}{(1 + ||h||^2)\beta}, \quad \beta \in (0, 1)$$

![Graph showing variograms for different values of \(\beta\).](image)
Bivariate Variogram Model

\[\gamma(h) = (\gamma^*(h) + C_{ii}(0) + C_{jj}(0) - 2C_{ij}(h))_{i,j=1,2}. \]

- \(C \): bivariate Matérn model (Gneiting et. al., 2010)

\[
C_{ij}(h) = \rho_{ij} \sigma_i \sigma_j \frac{2^{1-\nu_{ij}}}{\Gamma(\nu_{ij})} (a \| h \|)^{\nu_{ij}} K_{\nu_{ij}}(a \| h \|)
\]

for \(\sigma_1, \sigma_2 \geq 0, a, \nu_{11}, \nu_{22} > 0, \nu_{12} = (\nu_{11} + \nu_{22})/2 \) and suitable \(\rho_{ij} \)
Bivariate Variogram Model

\[\gamma(h) = (\gamma^*(h) + C_{ii}(0) + C_{jj}(0) - 2C_{ij}(h))_{i,j=1,2}. \]

- \(\gamma^* \): \[\gamma^*(h) = \frac{\|Ah\|^2}{(1 + \|Ah\|^2)^\beta}, \quad \beta \in (0, 1) \]
- \(C \): \[C_{ij}(h) = \rho_{ij}\sigma_i\sigma_j2^{1-\nu_{ij}}\Gamma(\nu_{ij})^{-1}(a\|Ah\|)^{\nu_{ij}}K_{\nu_{ij}}(a\|Ah\|) \]
- introduce anisotropy matrix \(A \) (dilation/rotation)
Estimation of Dependence Structure

Extremal coefficient function for bivariate processes:

\[
\begin{align*}
\mathbb{P}(X^{\text{obs}}(s) \leq x, X^{\text{obs}}(t) \leq x) &= \mathbb{P}(X^{\text{obs}}(0) \leq x)^{\theta^{\text{obs,obs}}(s,t)} \\
\mathbb{P}(X^{\text{obs}}(s) \leq x, X^{\text{pred}}(t) \leq x) &= \mathbb{P}(X^{\text{pred}}(0) \leq x)^{\theta^{\text{obs,pred}}(s,t)} \\
\mathbb{P}(X^{\text{pred}}(s) \leq x, X^{\text{obs}}(t) \leq x) &= \mathbb{P}(X^{\text{obs}}(0) \leq x)^{\theta^{\text{pred,obs}}(s,t)} \\
\mathbb{P}(X^{\text{pred}}(s) \leq x, X^{\text{pred}}(t) \leq x) &= \mathbb{P}(X^{\text{pred}}(0) \leq x)^{\theta^{\text{pred,pred}}(s,t)}
\end{align*}
\]

Estimation: components are estimated separately via F-madogram

ECF for bivariate BR processes:

\[
\begin{pmatrix}
\theta^{\text{obs,obs}}(s,t) & \theta^{\text{obs,pred}}(s,t) \\
\theta^{\text{pred,obs}}(s,t) & \theta^{\text{pred,pred}}(s,t)
\end{pmatrix}
\begin{pmatrix}
\sqrt{\gamma_{ij}(s-t)}
\end{pmatrix}
=
2\Phi \left(\frac{\sqrt{\gamma_{ij}(s-t)}}{2} \right)
\]

\[i,j=1,2\]
Extremal Coefficient Function

ECF between $X_{\text{obs}}^{\text{obs}}$ and $X_{\text{obs}}^{\text{obs}}$

ECF between $X_{\text{obs}}^{\text{obs}}$ and $X_{\text{pred}}^{\text{pred}}$

ECF between $X_{\text{pred}}^{\text{pred}}$ and $X_{\text{pred}}^{\text{pred}}$
Unconditional simulation of the Brown-Resnick process:

Realisation of X^{obs}

Realisation of X^{pred}
Outlook: Post-Processing of the Forecast

Given Data

- historical observation and forecast data
- forecast for today
Outlook: Post-Processing of the Forecast

Given Data

- historical observation and forecast data
- forecast for today

Bivariate BR process provides a model for observed wind gusts conditional on forecast

\[\sim \text{post-processed forecast} \]
Outlook: Post-Processing of the Forecast

Given Data
- historical observation and forecast data \(\rightarrow\) estimation of \(\xi, \mu, \sigma, \gamma\)
- forecast for today \(\rightarrow\) estimation of “weather parameters”

Bivariate BR process provides a model for observed wind gusts conditional on forecast
\(\rightarrow\) post-processed forecast
Outlook: Post-Processing of the Forecast

Given Data

- historical observation and forecast data \leadsto estimation of ξ, μ, σ, γ
- forecast for today \leadsto estimation of “weather parameters”

Bivariate BR process provides a model for observed wind gusts conditional on forecast \leadsto post-processed forecast

1. standardized forecast V^{pred}_{\max} to standard Gumbel margins $\leadsto X^{\text{pred}}$
2. simulate realizations of $X^{\text{pred}} \mid X^{\text{obs}}$
3. transform X^{obs} from Gumbel to GEV margins $\leadsto V^{\text{obs}}_{\max}$