Climate-driven individual tree growth modeling fusing diameter tape measurement and increment core data

Erin M. Schliep, Tracy Qi Dong, Alan E. Gelfand, Fan Li
Department of Statistical Science, Duke University

June 24, 2014
Duke Forest

Duke Forest is a forest managed by Duke University for research, teaching, and recreation. Located at edge of the Piedmont - 7,060 acres

Modeling tree growth through data fusion
Motivation

Model individual-level tree growth in the Duke Forest

- Fuse two datasets - tape measurement data and increment core data
- Use climate variables to explain annual growth and variability between years
- Model spatial correlation in individual-level growth
Tape measurement and increment core data
Duke Forest Plots

Stands established in 1991 to study forest dynamics. Both stands are approximately 5000m². Stand 1 is 200 meters north of Stand 2.

Modeling tree growth through data fusion.
Tape measurement data

- Diameter measurements conducted at intervals of one to four years starting in 1993
- 1583 unique trees with diameters
Core increment data

- Increment cores were collected in 1998, 2001, 2006, and 2009
- Some trees sampled in multiple years resulting in more than one set of increments observed for the tree
- 324 unique trees with increment cores
Tape measurement and core increment data

Modeling tree growth through data fusion
Tape measurement and core increment data

Clearly both datasets are noisy!
The hope is that by merging the two datasets we are able to improve estimates of annual growth.
Tape measurement model

$Y_{i,t}$ be the observed diameter of tree i at year t

$Y_{i,0}$ is the first observation for tree i

$$Y_{i,t} = \mu_{i,t} + \epsilon_{i,t}, \quad \epsilon_{i,t} \sim N(0, \sigma^2)$$

$\mu_{i,t}$ be the true diameter of tree i in year t

$\epsilon_{i,t}$ is measurement error

$$\log(\mu_{i,t} - \mu_{i,t-1}) = X'_it\beta + \omega_i$$

X_{it} denote a vector of climate covariate data for tree i and year t

ω_i is a tree specific random effect
Fusion model

\(Z_{i,t,j} \) be the \(j \)th observed radius increment of tree \(i \) and year \(t \)

Re-write growth between years \(t - 1 \) and \(t \) as

\[
\mu_{i,t} - \mu_{i,t-1} = \exp(X_{it}' \beta + \omega_i)
\]

\[
Y_{i,t} \sim N \left(\mu_{i,0} + \sum_{k=1}^{t} \exp(X_{ik}' \beta + \omega_i), \sigma^2 \right)
\]

\[
Z_{i,t,j} \sim N \left(\frac{1}{2} \exp(X_{it}' \beta + \omega_i), \gamma^2 \right)
\]
Modeling the tree-specific random effect

ω_i is the random effect for tree i used to capture the variation in response to weather at the tree level.

$$\omega_i \overset{iid}{\sim} \mathcal{N}(\nu, \tau^2) \quad \text{or} \quad \omega \sim \text{GP}(\nu, \Sigma)$$

Spatial correlation within stand, not across

$$\omega_k \sim \text{GP}(\nu \mathbf{1}, \Sigma_k)$$

Assume an exponential covariance for Σ_k, which is a function of distance and the parameters τ^2 and ϕ_k.
Model results

We compare the following four models:

1. Diameter only, non-spatial model (referred to as non-fusion, non-spatial)
2. Diameter only, spatial model (referred to as non-fusion, spatial)
3. Fusion, non-spatial model
4. Fusion, spatial model
Model comparison: Out-of-sample-prediction

Two types of out-of-sample prediction

1. Fill in missing observations of trees
2. Predict trees not observed - perhaps more interesting!
Model comparison: Out-of-sample-prediction

- Model fitted using 1,080 trees, 228 having 1 or more increment core
- Out-of-sample prediction on 500 trees, 96 having 1 or more increment core

Comparison based on:
- root mean square perdition error (RMSPE)
- continuous rank probability score (CRPS)

***Comparing models based on prediction of out-of-sample trees is difficult due to the variability of the “true value” between datasets.
Model comparison: Out-of-sample-prediction

Posterior Prediction for a Tree

- Observed
- Non-spatial, non-fusion
- Spatial, non-fusion
- Non-spatial, fusion
- Spatial fusion

Modeling tree growth through data fusion
Model comparison: Out-of-sample-prediction

Posterior Prediction for a Tree

Observed
Non-spatial, non-fusion
Spatial, non-fusion
Non-spatial, fusion
Spatial fusion

Increment core

Year

Modeling tree growth through data fusion
Model comparison: Out-of-sample-prediction

RMSPE - Tape measurements

CRPS - Tape measurements

Modeling tree growth through data fusion
Model comparison: Out-of-sample-prediction

RMSPE - Increment cores

CRPS - Increment cores

Modeling tree growth through data fusion
Model comparison: Out-of-sample-prediction

Table: CRPS and empirical coverage of 90% credible intervals for out-of-sample prediction of tape measurements and increment cores.

<table>
<thead>
<tr>
<th></th>
<th>CRPS</th>
<th>90% CI Empirical Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tape</td>
<td>Increment</td>
</tr>
<tr>
<td></td>
<td>Measurements</td>
<td>Cores</td>
</tr>
<tr>
<td>Diameter only, nonspatial</td>
<td>0.554</td>
<td>0.074</td>
</tr>
<tr>
<td>Diameter only, spatial</td>
<td>0.601</td>
<td>0.096</td>
</tr>
<tr>
<td>Fusion, nonspatial</td>
<td>0.555</td>
<td>0.051</td>
</tr>
<tr>
<td>Fusion, spatial</td>
<td>0.626</td>
<td>0.046</td>
</tr>
</tbody>
</table>

Modeling tree growth through data fusion
Summary and future work

- Prediction very similar between models
- Spatial models have lower prediction standard deviations
- Comparison across species
- Joint species modeling
- Use these tree diameter estimates in future modeling of individual and plot-level biomass