Multivariate Gaussian Random Fields with SPDEs

Xiangping Hu
Daniel Simpson, Finn Lindgren and Håvard Rue

Department of Mathematics, University of Oslo

PASI, 2014
Outline

- The Matérn covariance function and SPDEs
- Multivariate GRFs with SPDEs
- Multivariate GRFs with oscillating covariance functions
- Sampling the multivariate GRFs
- Fast inference approach
- Results with simulated datasets and real datasets
- Conclusion and Discussion
Multivariate Gaussian random fields are needed in real world

Why we need *Multivariate* random fields?

- Used to model the correlated datasets;
- Capture the spatial dependence structures;
- Helpful to predict the other fields;
- Big area and a lot of issues needed to be solved.
Multivariate Gaussian random fields are needed in real world
Motivation

Why systems of SPDEs for *Multivariate* GRFs ???

- Automatically fulfill the *non-negative definite* constrain;
- The precision matrix Q is *sparse*;
- The parameters in the (systems of) SPDEs are interpretable;
- Fast inference can be achieved;
- Can be extended in various of ways.
Matérn covariance function

The Matérn covariance function is isotropic and has the form

\[\text{Cov}(x(0), x(h)) = \sigma^2 M(h | \nu, \kappa) = \frac{\sigma^2 2^{1-\nu}}{\Gamma(\nu)} (\kappa \|h\|)^\nu K_\nu(\kappa \|h\|), \]

- \(\|h\|\) denotes the Euclidean distance;
- \(\nu > 0\) is the smoothness parameter;
- \(\kappa > 0\) is the scaling parameter;
- \(\sigma^2\) is the marginal variance;
- \(K_\nu\) is the modified Bessel function of second kind.
The important relationship is that a Gaussian Field $x(s)$ with the Matérn covariance function is a stationary solution to the linear fractional SPDE (Lindgren et al, 2011)

$$(\kappa^2 - \Delta)^{\alpha/2} x(s) = \mathcal{W}(s), \quad \alpha = \nu + d/2, \quad \nu > 0$$

- $(\kappa^2 - \Delta)^{\alpha/2}$ is a pseudo-differential operator,
- $\mathcal{W}(s)$ is standard spatial Gaussian white noise
- Δ is the Laplacian
The Matérn covariance function, restrictive ???

At the first glance, modelling with the Matérn covariance function seems quite restrictive,

But actually it is not since it covers the most important and mostly used covariance models in spatial statistics.

Stein (1999), on Page 14, recommend with “Use the Matérn model".
A multivariate GRF is a collection of continuously indexed multivariate normal random vectors

\[x(s) \sim \text{MVN}(0, \Sigma(s)), \]

where, \(\Sigma(s) \) is a non-negative definite matrix which depends on the points \(s \in \mathbb{R}^d \).
Multivariate SPDE model

Define system of SPDEs

\[
\begin{pmatrix}
L_{11} & L_{12} & \ldots & L_{1p} \\
L_{21} & L_{22} & \ldots & L_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
L_{p1} & L_{p2} & \ldots & L_{pp}
\end{pmatrix}
\begin{pmatrix}
x_1(s) \\
x_2(s) \\
\vdots \\
x_p(s)
\end{pmatrix}
=
\begin{pmatrix}
\varepsilon_1(s) \\
\varepsilon_2(s) \\
\vdots \\
\varepsilon_p(s)
\end{pmatrix}.
\]

\(L_{ij} = b_{ij}(\kappa_{ij}^2 - \Delta)^{\alpha_{ij}/2}\) are differential operators;

\(\varepsilon_i\) are independent but not necessarily identically distributed noise processes;

Currently, we can only take integer valued \(\alpha_{ij}\).
Solve the SPDEs

The idea is taken from finite element analysis. The solution of the SPDE could be represented by

\[x(s) = \sum_{i=1}^{n} \psi_i(s) \omega_i, \]

- \(\psi_i(s) \) is some chosen basis-function;
- \(\omega_i \) is some Gaussian distributed weights;
- \(n \) is the number of the vertices in the triangulation.
We choose the piece-wise linear basis function.
The Precision matrix

Denote $Q_{\alpha i}$ as the precision matrix for the Gaussian weights ω_i for $\alpha_i = 1, 2, 3, \cdots$ as a function of κ_{ij}

$$\begin{cases}
Q_{1, \kappa_{ij}^2} = K_{\kappa_{ij}^2} \\
Q_{2, \kappa_{ij}^2} = K_{\kappa_{ij}^2}^T C^{-1} K_{\kappa_{ij}^2} \\
Q_{\alpha, \kappa_{ij}^2} = K_{\kappa_{ij}^2}^T C^{-1} Q_{\alpha-2, \kappa_{ij}^2} C^{-1} K_{\kappa_{ij}^2}, \text{ for } \alpha = 3, 4, \cdots.
\end{cases}$$

$\langle \cdot, \cdot \rangle$ denote the inner product;

$C_{ij} = \langle \psi_i, \psi_j \rangle, \ G_{ij} = \langle \nabla \psi_i, \nabla \psi_j \rangle, \ K_{\kappa_{ij}^2} = \kappa_{ij}^2 C_{ij} + G_{ij}$.
GMRF approximation

\[C_{ij} = \langle \psi_i, \psi_j \rangle \] is replaced by \(\tilde{C}_{ii} = \langle \psi_i, 1 \rangle. \)

\(\tilde{C}_{ii} \) is a diagonal matrix;

diagonal matrix \(\tilde{C}_{ii} \) yields a Markov approximation;

difference is negligible.
Gneiting et al. (2010) "Matérn Cross-Covariance Functions for Multivariate Random Fields":

\[
\mathbf{C}(\mathbf{h}) = \begin{pmatrix}
C_{11}(\mathbf{h}) & C_{12}(\mathbf{h}) & \cdots & C_{1p}(\mathbf{h}) \\
C_{21}(\mathbf{h}) & C_{22}(\mathbf{h}) & \cdots & C_{2p}(\mathbf{h}) \\
\vdots & \vdots & \ddots & \vdots \\
C_{p1}(\mathbf{h}) & C_{p2}(\mathbf{h}) & \cdots & C_{pp}(\mathbf{h})
\end{pmatrix},
\]

- \(C_{ii}(\mathbf{h}) = \sigma_{ii} M(\mathbf{h}|\nu_{ii}, a_{ii}) \) is the marginal covariance function;
- \(C_{ij}(\mathbf{h}) = \rho_{ij} \sigma_{i} \sigma_{j} M(\mathbf{h}|\nu_{ij}, a_{ij}) \) is the cross-covariance function.
Model matching

The models based on the SPDEs approach and the covariance-based approach are compared by matching the corresponding elements of the spectral matrix.

Under the assumption that $a_{11} = a_{21} = a_{22}$ and $\nu_{11} = \nu_{21} = \nu_{22}$, the models constructed by using SPDEs approach and the covariance-based approach becomes equivalent when

\[-\frac{b_{22}}{b_{21}} = \frac{\sigma_1}{\rho \sigma_2},\]

\[\frac{b_{22}^2}{b_{11}^2 + b_{21}^2} = \frac{\sigma_{11}}{\sigma_{22}}.\]
Sampling the positively correlated bivariate GRFs
Sampling the negatively correlated bivariate GRFs
The correlation functions
Example and application

It can be shown that the logarithm of posterior distribution of \(\theta \) is

\[
\log(\pi(\theta|y)) = \text{Const} + \log(\pi(\theta)) + \frac{1}{2} \log(|Q(\theta)|)
\]

\[
-\frac{1}{2} \log(|Q_c(\theta)|) + \frac{1}{2} \mu_c(\theta)^T Q_c(\theta) \mu_c(\theta).
\]
Triangular system of SPDEs

The triangular system of SPDEs is commonly used:

\[
\begin{pmatrix}
L_{11} & 0 & \ldots & 0 \\
L_{21} & L_{22} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
L_{p1} & L_{p2} & \ldots & L_{pp}
\end{pmatrix}
\begin{pmatrix}
x_1(s) \\
x_2(s) \\
\vdots \\
x_p(s)
\end{pmatrix}
=
\begin{pmatrix}
\varepsilon_1(s) \\
\varepsilon_2(s) \\
\vdots \\
\varepsilon_p(s)
\end{pmatrix}.
\]

- Can be solved sequentially;
- Much faster and robust;
- Possible to model high dimensional multivariate GRFs.
Results from simulated data

Table: Inference with simulated dataset 1

<table>
<thead>
<tr>
<th>Parameters</th>
<th>True value</th>
<th>Estimated</th>
<th>Standard deviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ_{11}</td>
<td>0.3</td>
<td>0.295</td>
<td>0.019</td>
</tr>
<tr>
<td>κ_{21}</td>
<td>0.5</td>
<td>0.471</td>
<td>0.044</td>
</tr>
<tr>
<td>κ_{22}</td>
<td>0.4</td>
<td>0.380</td>
<td>0.020</td>
</tr>
<tr>
<td>b_{11}</td>
<td>1</td>
<td>1.009</td>
<td>0.069</td>
</tr>
<tr>
<td>b_{21}</td>
<td>1</td>
<td>1.032</td>
<td>0.064</td>
</tr>
<tr>
<td>b_{22}</td>
<td>1</td>
<td>0.997</td>
<td>0.059</td>
</tr>
</tbody>
</table>
Statistical inference with real data example

Show how to use the SPDEs approach for constructing the multivariate GRFs in real application;

The same meteorological dataset used by Gneiting et al. (2010) was chosen and analyzed;

It contains the following data: pressure errors (in Pascal), temperature errors (in Kelvin), measured against longitude and latitude;

This meteorological dataset contains one observation at 157 locations in the north American Pacific Northwest;

Valid on 18th, December of 2003 at 16:00 local time.
The system of SPDEs

The system of SPDEs has been used for this dataset can be written down explicitly as

\[b_{11}(\kappa_{11}^2 - \Delta)^{\alpha_{11}/2}x_1(s) = \varepsilon_1(s), \]
\[b_{22}(\kappa_{22}^2 - \Delta)^{\alpha_{22}/2}x_2(s) + b_{21}(\kappa_{21}^2 - \Delta)^{\alpha_{21}/2}x_1(s) = \varepsilon_2(s). \]

The noise processes are from SPDEs

\[(\kappa_{n1}^2 - \Delta)^{\alpha_{n1}/2}\varepsilon_1(s) = \mathcal{W}_1(s), \]
\[(\kappa_{n2}^2 - \Delta)^{\alpha_{n1}/2}\varepsilon_2(s) = \mathcal{W}_2(s). \]
The re-construct bivariate fields from SPDEs approach
The re-construct bivariate fields from Gneiting et al. (2010) approach
The predictive performance

Figure: the covariance-based approach (left) and the predictive performances of SPDEs approach (right)
Table: predictive errors for the SPDEs approach and the covariance-based models

<table>
<thead>
<tr>
<th>Models</th>
<th>relative errors</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>pressure field</td>
<td>temperature field</td>
</tr>
<tr>
<td>Covariance-based model</td>
<td>0.821</td>
<td>0.716</td>
<td></td>
</tr>
<tr>
<td>SPDEs approach</td>
<td>0.777</td>
<td>0.690</td>
<td></td>
</tr>
</tbody>
</table>
Now we go even further!

Construct the multivariate GRFs with oscillating covariance functions. Two approaches can be considered.

▶ Re-parametrization the systems of the SPDEs,
▶ Using the noise process with oscillating covariance function.
Question: Why oscillating covariance functions

Some random fields could have the oscillating covariance structure, such as the pressure on the globe;

Using the SPDE approach, it is not hard to do that.

Didn’t find many literatures doing this in spatial statistics. (Am I Wrong?)
Systems of SPDEs with oscillating noise processes

\[
\begin{pmatrix}
L_{11} & L_{12} & \ldots & L_{1p} \\
L_{21} & L_{22} & \ldots & L_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
L_{p1} & L_{p2} & \ldots & L_{pp}
\end{pmatrix}
\begin{pmatrix}
x_1(s) \\
x_2(s) \\
\vdots \\
x_p(s)
\end{pmatrix}
=
\begin{pmatrix}
\epsilon_1(s) \\
\epsilon_2(s) \\
\vdots \\
\epsilon_p(s)
\end{pmatrix}.
\]

\(L_{ij} = b_{ij}(\kappa_{ij}^2 - \Delta)^{\alpha_{ij}/2}\) are differential operators;

\(\epsilon_i\) are independent but not necessarily identically distributed noise processes;

Some \(\epsilon_i\) can have oscillating covariance functions
We recommend the lower triangular operator matrix

\[
\begin{pmatrix}
\mathcal{L}_{11} & & & & \\
\mathcal{L}_{21} & \mathcal{L}_{22} & & & \\
& \ddots & \ddots & \ddots & \\
\mathcal{L}_{p1} & \mathcal{L}_{p2} & \ldots & \mathcal{L}_{pp}
\end{pmatrix}
\begin{pmatrix}
x_1(s) \\ x_2(s) \\ \vdots \\ x_p(s)
\end{pmatrix}
= \begin{pmatrix}
\varepsilon_1(s) \\ \varepsilon_2(s) \\ \vdots \\ \varepsilon_p(s)
\end{pmatrix}.
\]

Many advantages: less parameters, fast inference, easy interpreting, and easy locating the position of the oscillating fields.
If only the noise process $\varepsilon_i(s)$ has oscillating covariance function, then

- All random fields $x_j(s), j < i$ will have non-oscillating covariance functions;
- Random fields $x_j(s), j = i$ will be sure to have oscillating covariance function;
- Random fields $x_j(s), j > i$ could possibly have oscillating covariance functions;
systems of SPDEs with oscillating noise processes
The correlation function
systems of SPDEs with oscillating noise processes
The correlation function
Results from simulated data 1

<table>
<thead>
<tr>
<th>Parameters</th>
<th>True values</th>
<th>Estimates</th>
<th>Standard deviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_{11}</td>
<td>0.5</td>
<td>0.495</td>
<td>0.013</td>
</tr>
<tr>
<td>b_{21}</td>
<td>0.25</td>
<td>0.248</td>
<td>0.017</td>
</tr>
<tr>
<td>b_{22}</td>
<td>1</td>
<td>1.027</td>
<td>0.032</td>
</tr>
<tr>
<td>h_{11}</td>
<td>0.25</td>
<td>0.248</td>
<td>0.010</td>
</tr>
<tr>
<td>h_{22}</td>
<td>0.36</td>
<td>0.355</td>
<td>0.029</td>
</tr>
<tr>
<td>κ_{n_2}</td>
<td>0.6</td>
<td>0.601</td>
<td>0.004</td>
</tr>
<tr>
<td>ω</td>
<td>0.95</td>
<td>0.953</td>
<td>0.092</td>
</tr>
</tbody>
</table>

This is with the case only the second random field is oscillating and the first fields is a Matérn random field.
Results from simulated data 2

<table>
<thead>
<tr>
<th>Parameters</th>
<th>True values</th>
<th>Estimates</th>
<th>Standard deviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_{11}</td>
<td>0.5</td>
<td>0.497</td>
<td>0.014</td>
</tr>
<tr>
<td>b_{21}</td>
<td>0.25</td>
<td>0.234</td>
<td>0.012</td>
</tr>
<tr>
<td>b_{22}</td>
<td>1</td>
<td>0.964</td>
<td>0.029</td>
</tr>
<tr>
<td>h_{11}</td>
<td>0.25</td>
<td>0.269</td>
<td>0.024</td>
</tr>
<tr>
<td>h_{22}</td>
<td>0.36</td>
<td>0.339</td>
<td>0.022</td>
</tr>
<tr>
<td>κ_{n_1}</td>
<td>0.5</td>
<td>0.496</td>
<td>0.005</td>
</tr>
<tr>
<td>κ_{n_2}</td>
<td>0.6</td>
<td>0.636</td>
<td>0.049</td>
</tr>
<tr>
<td>ω</td>
<td>0.95</td>
<td>0.956</td>
<td>0.113</td>
</tr>
</tbody>
</table>

This is with the case both the random fields are with oscillating covariance functions.
Practical settings for inference

- $\kappa_{11} = \kappa_{n_1}$ and $\kappa_{22} = \kappa_{n_2}$;
- Model selection: fix α_{ij} and α_{n_i} at different values;
- Multivariate GRFs with oscillating covariance functions:
 - Fewer noise processes with oscillating covariance functions when possible;
 - Pre-analysis for the location the oscillating random fields.
Inference with real dataset

This dataset is from the ERA 40 database, and this dataset contains the temperature and pressure data on the whole globe on 4th of September, 2002.

Figure: Real dataset from ERA 40 database with temperature (a) and pressure (b)
Estimated bivariate random fields: 2D

(a) Estimated conditional mean of bivariate random fields for temperature

(b) Estimated conditional mean of bivariate random fields for pressure

Figure: Estimated conditional mean of bivariate random fields for temperature (a) and pressure (b)
Figure: Prediction for the bivariate random fields at another 5000 data points for temperature (left) and pressure (right)
Conclusion, discussion and future work

Illustrated the possibility of construction the multivariate GRFs with the system of SPDEs;

the GRFs constructed by the system of SPDEs fulfill the “non-negative definite” constrain;

The precision matrix for the GMRFs are sparse and hence fast inferences are feasible even for large datasets;

Demonstrate the connection between the covariance-based models and SPDE-based models;

Looking for real datasets for good applications!!!