Chapter 2: Parametric families of distributions

2.1 Exponential families (Severini 1.2)

(i) Defn: A parametric family \(\{ P_\theta; \theta \in \Theta \} \) with densities w.r.t. some \(\sigma \)-finite measure of the form
\[
f(x; \theta) = c(\theta)h(x)\exp(\sum_{j=1}^{k} \pi_j(\theta) t_j(x)) \quad -\infty < x < \infty.
\]

(ii) Examples: Binomial, Poisson, Gamma, Chi-squared, Normal, Beta, Negative Binomial, Geometric ...

(iii) NOT: Cauchy, t-dsns, Uniform, any where support depends on \(\theta \).

(iv) Note \(c(\theta) \) depends on \(\theta \) through \(\{ \pi_j(\theta) \} \).
 Defn: \((\pi_1, ..., \pi_k) \) is natural parametrization. – defined only up to linear combinations. We assume vector \(\pi \) is of full rank – no linear relationship between the \(\pi_j \).

(v) Natural parameter space
\[
\Pi = \{ \pi : 0 < \int h(x)\exp(\sum_{j=1}^{k} \pi_j(\theta) t_j(x))dx < \infty \}
\]

Lemma: \(\Pi \) is convex.

(vi) Thm: For any integrable \(\phi \), any \(\pi_0 \) in interior of \(\Pi \), then \(\int \phi(x)h(x)\exp(\sum_{j=1}^{k} \pi_j(\theta) t_j(x))dx \) is cts at \(\pi_0 \), has derivatives of all orders at \(\pi_0 \), and can get derivatives by differentiating under the integral sign.
 Cor: With \(\phi \equiv 1 \), \(c(\pi) \) is cts, diffble, etc.

(vii) Moments: \(T = (t_1(X), \ldots, t_k(X)) \)
Note \(\log f(x; \pi) = \log(h(x)) + \log c(\pi) + \sum_{j=1}^{k} \pi_j t_j(x) \).
Also \(\frac{\partial f}{\partial \pi} = \frac{\partial \log f}{\partial \pi} f \).
Differentiating \(\int f(x; \pi)dx = 1 \) gives \(\text{E}(T) = -\frac{\partial}{\partial \pi}(\log c(\pi)) \)
Differentiating again gives \(\text{var}(T) = -\frac{\partial^2}{\partial \pi^2}(\log c(\pi)) \)
2.2 Transformation Group families (Severini 1.3)

(i) Groups \mathcal{G} of transformations on \mathbb{R}:
Contains identity, closed under inverses, and composition.

(ii) Location:
$\mathcal{G} = \{g_a : g_a(x) = x + a\}$ $x \in \mathbb{R}, a \in \mathbb{R}$.
Let $X \sim F$ and $X_a = X + a$,
$F_a(x) = \Pr(X_a \leq x) = \Pr(X \leq (x - a)) = F(x - a)$.
The set of dsns, for fixed F and for all $a \in \mathbb{R}$ is a location family. Examples: Normal, Cauchy, double exponential. Also Uniform, Exponential, ...

(iii) Scale:
$\mathcal{G} = \{h_b : h_b(x) = bx\}$ $x \in \mathbb{R}^+, b \in \mathbb{R}^+$.
Let $X \sim F$ and $X_b = bX$,
$F_b(x) = \Pr(X_b \leq x) = \Pr(X \leq x/b) = F(x/b)$.
The set of dsns, for fixed F and for all $b \in \mathbb{R}^+$ is a scale family. Examples: exponential, gamma,

(iv) We can combine location and scale: Normal, Cauchy, logistic, Uniform, see also Severini Pp 10-11.

(v) A rather large group family:
X_i i.i.d. with cts df F and support the whole of \mathbb{R}.
$\mathcal{G} = \{g : g$ cts strictly increasing, $g(-\infty) = -\infty, g(\infty) = \infty\}$
$W_i = g(X_i)$, W_i are also i.i.d. with cts df and support the whole real line. Family consists of all such dsns.

(vi) A group family: $\mathcal{G} = \{g_{b,c} : g(x) = bx^{1/c}, b > 0, c > 0\}$.
If X is standard exponential: $F(x) = 1 - e^{-x}$, $g_{b,c}(X)$ has Weibull dns with density $cb^{-c}x^{c-1}\exp((-x/b)^c)$
2.3 Sufficiency, minimal sufficiency, and completeness (Severini 1.5) (THIS IS REVISION ONLY)

(i) Defn: Vector T is sufficient for θ w.r.t. $\{P_{\theta}; \theta \in \Theta\}$ if $P_{\theta}(X|T(X) = t)$ does not depend on θ

(ii) Factorization criterion.
$T(X)$ is sufficient for θ iff $f(x; \theta) \equiv h(x)g(T(X), \theta)$

(iii) Defn: $T(X)$ is minimally sufficient if it is a function of every sufficient statistic. Idea: coarsest partition of the sample space that is sufficient.
Minimal sufficient statistics are essentially unique.

(iv) Likelihood ratio criterion: define

\[
x \sim x' \iff \frac{f(x; \theta_1)}{f(x; \theta_2)} = \frac{f(x'; \theta_1)}{f(x'; \theta_2)} \forall \theta_1, \theta_2 \in \Theta
\]

T is minimal sufficient iff $T(x) = T(x') \iff x \sim x'$

(v) Defn: Sufficient statistic T is (boundedly) complete if for any measurable real-valued (bounded) function g

\[
E_{\theta}(g(T)) = 0 \forall \theta \in \Theta \Rightarrow P_{\theta}(g(T) = 0) = 1 \forall \theta \in \Theta
\]

(Completeness provides uniqueness of unbiased estimators of $\xi(\theta)$.)

(vi) Lehmann-Scheffé Thm: for sufficient T T complete \Rightarrow T min suff.

(vii) Basu’s Thm: for sufficient T T complete, V dsn not depending on θ

$\Rightarrow \forall P_\theta, T, V$ independent.
2.4 Vector exponential families

(i) Density on some subset of \mathbb{R}^n w.r.t. some σ-finite measure:
\[f(x; \theta) = c(\theta)h(x) \exp(\sum_{j=1}^k \pi_j(\theta)t_j(x)) \quad \forall \ x \in \mathbb{R}^n \]
For example: X_i i.i.d. from scalar exponential family \Rightarrow vector $X^{(n)}$ from (vector) exponential family.

(ii) For X_i i.i.d. from scalar exponential family,
\[\{T_j = \sum_{i=1}^n t_j(X_i); j = 1, ..., k\} \text{ are sufficient. (Use 2.3(ii)).} \]

(iii) $\{T_j; j = 1, ..., k\}$ is natural sufficient statistic. If there are no affine relationships among the $\{t_j(x)\}$, then π_j are identifiable, and family is of full rank. Note the dimension k of suff. statistic does not depend on n.

(iv) For X_i i.i.d. from scalar exponential family,
\[\{T_j; j = 1, ..., k\} \text{ is also from a (vector) exponential family.} \]

(v) For X_i i.i.d. from scalar exponential family,
\[((T_1, ..., T_l)| (T_{l+1}, ..., T_k)) \text{ is also from a (vector) exponential family.} \]

(vi) \[m_T(s) = E(\exp(sT)) = c(\pi)/c(s + \pi) \text{ where } c() \text{ is the c-fn for } T = (T_1, ..., T_k). \]

(vii) Provided Π contains an open rectangle in \mathbb{R}^k
(a) Natural sufficient $\{T_1, ..., T_k\}$ is minimal sufficient
(b) Natural sufficient $\{T_1, ..., T_k\}$ is complete.

(viii) Rank vs dimension: Rank refers to affine relationships among $\{\pi_j\}$ or $\{T_j\}$. Full rank needed for minimal sufficiency (see Sev.P.18). Dimension refers to Π containing open rectangle in \mathbb{R}^k, and is needed for uniqueness of Laplace transforms, and hence for completeness.
2.5 Multivariate Normal distribution (JAW 1.13, Sev 1.7)

Defn: $Y = (Y_1, ..., Y_n)$ is jointly Normal with mean 0 if $\exists \ Z_1, ..., Z_k$ i.i.d. $N(0, 1)$ s.t. $Y = AZ$ for some $n \times k$ matrix A.

(i) $\text{var}(Y) = E(YY') = E(AZZ'A') = AA' \equiv \Sigma$

(ii) Σ symmetric and non-negative definite $\Rightarrow \exists n \times n$ matrix A with $\Sigma = AA'$.

(iii) The mgf of Y is $m_Y(s) = E(\exp(s'Y)) = E(\exp(s'AZ))$

$= E(\exp((A's)'Z)) = E(\prod_j \exp((A's)_j Z_j)) = \prod_j E(\exp((A's)_j Z_j))$

$= \prod_j m_{Z_j}((A's)_j) = \prod_j \exp(\frac{1}{2}(A's)_j^2) = \exp(\frac{1}{2} \Sigma_j (A's)_j^2)$

$= \exp(\frac{1}{2}(s'A)(A's)) = \exp(\frac{1}{2}s'Ss)$

(iv) If Σ is non-singular, then A is $n \times n$ non-singular, let $Y = \mu + AZ$, then the pdf of $Y \sim N_n(\mu, \Sigma)$ is

$f_Y(y) = (2\pi)^{-n/2} |\Sigma|^{-1/2} \exp((-\frac{1}{2}y'\Sigma^{-1}y - \frac{1}{2}\mu'\Sigma^{-1}\mu))$

(v) If $Y \sim N_n(0, \Sigma)$ and Σ is partitioned into dimensions k and $n-k$ as $\Sigma_{ij}, i, j, = 1, 2$, then, using the mgf,

(a) $(Y_1, ..., Y_k) \sim N_k(0, \Sigma_{11}).$

(b) If $\Sigma_{12} = 0$, $Y^{(1)} = (Y_1, ..., Y_k)$ is independent of $Y^{(2)} = (Y_{k+1}, ..., Y_n)$.

(c) If $(X_1, X_2)'$ are jointly Normal vectors they are indep, iff $\text{Cov}(X_1, X_2) = 0.$

(d) Linear combinations of Normals are Normal.

(vi) If $Y \sim N_n(\mu, \Sigma)$, and $\mu' = (\mu^{(1)}, \mu^{(2)})$, Σ partitioned as in (v), and Σ_{22} non-singular then $(Y^{(1)}|Y^{(2)}) \sim N_k(\mu^{(1,2)}, \Sigma_{11,2}),$ where $\mu^{(1,2)} = \mu^{(1)} + \Sigma_{12}\Sigma_{22}^{-1}(Y^{(2)} - \mu^{(2)}), \Sigma_{11,2} = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}.$

(vii) $Y^{(1)} - E(Y^{(1)}|Y^{(2)})$ is independent of $Y^{(2)}$

Proof: Check the covariance.
2.6 Chi-squared and non-central chi-squared dsns (JAW 1.15-1.16)

(i) Defn: If X_i are i.i.d $N(0,1)$, $\sum_1^n X_i^2$ is χ^2_n.

(ii) If $X \sim N(0,1)$, $Y = X^2$, $m_Y(s) = E(\exp(sX^2)) = (1 - 2s)^{-1/2}$
If $V \sim \mathcal{E}(1)$, $m_V(s) = (1 - s)^{-1}$
If $W \sim G(\alpha, \beta)$, $m_W(s) = (1 - \beta s)^{-\alpha}$

(iii) Hence χ^2_n is Gamma, $G(n/2, 2)$.

(iv) $Y \sim N_n(0, \Sigma) \Rightarrow Y'\Sigma^{-1}Y \sim \chi^2_n$

(v) If $X \sim N(\mu, 1)$, $Y = X^2$
$m_Y(s) = E(\exp(sX^2)) = (1 - 2s)^{-1/2} \exp(\mu^2 s/(1 - 2s))$.
If $(W|K = k) \sim \chi^2_{2k+1}$, $K \sim \mathcal{P}(\mu^2/2)$, then $m_W(s) = E(E(e^{sW}|K) = E((1 - 2s)^{-2K+1/2}) = (1 - 2s)^{-1/2}m_K(\log(1/(1 - 2s)))$
which is same if we do the sums right!

(vi) Now let $X_1 \sim N(\mu, 1)$ and X_2, \ldots, n i.i.d $N(0,1)$ indep of X_1, $Y = \sum_1^n X_i^2$. Mgf of Y is multiplied by $(1 - 2s)^{-(n-1)/2}$, so now Y has dsn of W, where $W|K \sim G((2k + n)/2, 2)$, K as above.
We define this dsn to be non-central χ^2 with n deg freedom
and non-centrality $\delta = \mu^2$.
(Note: if $\mu = 0$, $P(K = 0) = 1$, and we regain $\chi^2_n \equiv G(n/2, 2)$.)

(vii) Now $X \sim N_n(\mu, I)$, then $Y = X'X \sim \chi^2_n(\delta)$ with $\delta = \mu'\mu$.

(viii) $X \sim N_n(\mu, \Sigma)$, $Y = X'\Sigma^{-1}X$, then $Y \sim \chi^2_n(\delta)$, where $\delta = \mu'\Sigma^{-1}\mu$.

6