STAT 311: Lecture 2

Summarizing Data:

- Types of Variables
 - Categorical/ordinal; Quantitative/continuous.
- Graphical summaries of categorical data
 - Pie charts, barplots.
- Graphical summaries of discrete data
 - Dot plots, stem-and-leaf
- The 5-number summary of quantitative data
- Graphical summaries of quantitative data
 - Histograms, Box plots
- Two example graphics with strong visual impact.
Where we are at:

- **Canvas:** A web course page temporary alternative:
 - It will take you to a page with some links to lecture slides and lab files for Lab1 etc. at bottom of the page.
 - Canvas syllabus page is now public through UW MyPlan.
- **Aplia:** as of 10:30 p.m. yesterday (Tuesday)
 - 153 people signed up to the course successfully
 - A **few** people already started on the practice (“Graded:excluded”) assignment, and on the graded homeworks!
- **Add codes:** a **few** more will be sent out
 - If emailing about add codes, PLEASE USE or GIVE UW Id.

Section changes -- **not** unless you cannot register without, and not if a new lecture add code needed – the few add codes must be saved for genuine adds.
View forward for the week

- **Wednesday** – Graphical summaries of data. (U/H 2.1-2.4)
- **Thurs/ Friday** -- Aplia practice and more practice, Also R.
 - “Graded” (but not counting) Math prep assignment “due” Friday
- **Friday** – Numerical summaries of data (U/H 2.5-2.7)
 - more material needed to complete Hwk 1 and lab 1
- **Monday** – relationships between two variables (3.1, 3.3)
- **Monday 11:00 p.m.**: first actually graded homework is due
 - Two parts – 1a: relating to U/H Chapter 1,
 - -- 1b: relates to U/H Chapter 2 (mostly 2.1-2.4)
 - Aplia scores separately, but it will count as single homework grade. (and policy is drop lowest weekly score).
- **Tuesday** -- quiz section -- more R towards lab 1
- **Tues 11:00 p.m.**: Lab 1 is due.
- **Wednesday**: Linear regression (U/H 3.2)
- **Thursday** -- Quiz section, starting towards Lab 2
Types of Variables

- **Categorical**: (U/H Chapter 4)

 No logical ordering to the possible values.

 Examples: eye color, nationality, types of investments.

- **Ordinal**: Categorical variables for which there is an ordering. Examples: No/Yes (workdays lost to flu) Year in college (Fr, Soph, Jun, Sen), T-shirt size (S,M,L,XL)

- **Quantitative**: (U/H Chapter 3)

 Numerical values for each observation.

 - **Discrete**: Take only a few (?) possible values.

 Example: Number of cousins, Number of accidents.

 - **Continuous**: Can, in principle, take any value in a range. Examples: Body temperature, rainfall amount.

 Note the accuracy with which we measure a variable may be limited (e.g. rainfall in 0.01”).
Categorical variables

• The measurement on a case (Observational unit) is a color, or other descriptive type.
• Data are counts or proportions in each category.
• Example: Types of investments in a retirement portfolio:

<table>
<thead>
<tr>
<th>Asset type</th>
<th>My portfolio</th>
<th>Joe’s portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Money market/Cash</td>
<td>7%</td>
<td>5%</td>
</tr>
<tr>
<td>Certificates (flex CDs)</td>
<td>15%</td>
<td>8%</td>
</tr>
<tr>
<td>Mutual funds (Bonds)</td>
<td>24%</td>
<td>17%</td>
</tr>
<tr>
<td>Annuities (Flex Return)</td>
<td>40%</td>
<td>30%</td>
</tr>
<tr>
<td>Securities (Stocks)</td>
<td>5%</td>
<td>25%</td>
</tr>
<tr>
<td>Other (Comm.Futures)</td>
<td>9%</td>
<td>15%</td>
</tr>
</tbody>
</table>
PIE CHARTS

• The easiest way to represent these data is with a pie chart.
• The AREA represents the proportion in each category.

• I have more annuities (as a proportion)
• Joe has more stocks
• But so what?
Ordinal data: The Bar plot

- The investment types are ordered by risk.
- Ordering the categories in a bar plot makes sense.

<table>
<thead>
<tr>
<th>MINE</th>
<th>JOE’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>Ca</td>
</tr>
<tr>
<td>CD</td>
<td>CD</td>
</tr>
<tr>
<td>Bo</td>
<td>Bo</td>
</tr>
<tr>
<td>Ann</td>
<td>Ann</td>
</tr>
<tr>
<td>St</td>
<td>St</td>
</tr>
<tr>
<td>Oth</td>
<td>Oth</td>
</tr>
</tbody>
</table>

- Now we see Joe’s portfolio is riskier than mine.
- But also that I am not ultra-risk-averse (not all Cash/CD)
- Or we can color my/Joe’s bars and place alongside – see example 2.4 in U/H textbook.
U/H Ex 2.4: Nightlights and nearsightedness

- **Survey** of n=479 children
- **Response:** degree of myopia
 - 3 categories represented by colors.
- **Explanatory variable:** amount of sleeptime lighting as babies
 - 3 categories across the x-axis.

Figure 2.4 Bar chart for myopia and nighttime lighting in infancy

Myopia level
- None
- Some
- High

Percent with each myopia level

- Dark
- Nightlight
- Full light

Lighting conditions before age 2

Thompson, Stat 311, WIN 2015
Discrete quantitative data

- Data with only a few values can be represented as a dot plot or stem-and-leaf diagram.
- Example: right hand-spans of 103 female students (2.5 in U/H)

- Values (cm) are on x-axis
- Every observation gets a dot.
- Pile-up the dots for repeated values.

- The stem represents coarser scale (here cm)
- Each data point gets a listing as a “leaf” to the right of the stem.
- The digit of the leaf is 0.1 cm (mm).
- Do NOT over-interpret 18.8 is close to 19: the boundaries are arbitrary.
The 5-number summary (or 6)

• How to summarize these data??
 • Most values are around 20 cm.
 • Two values are very low ("outliers")
 • Apart from these: range is 16 to 23 cm.

• More generally??
 • (1) The **median**: the “middle” of the set of values:
 ~50% are below, ~50% are above
 • The **quartiles**:
 (2) Q1: Lower quartile: ~25% are below, ~75% are above
 (3) Q3: Upper quartile: ~75% are below, ~25% are above
 • The **extremes**:
 (4) Minimum: the smallest value
 (5) Maximum: the largest value
 • (6) The **inter-quartile range**: IQR = Q3-Q1

• In the female hand-span example: median=20cm,
 quartiles = 19cm, 21cm: min=12.5cm, max=23.25cm
Histograms

- Back to the example of female hand spans
- Above is the dot plot
- Below is the histogram.
- Which do you prefer?

Note we bin the data:
Each bin is width 1 cm, centered on the integer values
- Need to choose the widths and boundaries of bins
Counts or proportions?

- **Left:** Vertical axis is count or frequency. (2 words; same thing).
- **Right:** Vertical axis is percentage, proportion, or density (3 words, equivalent things)

- The only difference is what is on the vertical axis.
- Plotting density instead of frequency is useful when comparing samples of different size.
Basic rules for histograms

- Can be used for any quantitative data.
- Normally, the histogram bars should be equal width.
- Then, the height represents the count (frequency) or percentage or proportion (density).

- ALWAYS, the AREA represents the count/percentage.
- For percentages: the total AREA is 100%.

The next page shows four histograms of miles driven per year in a sample of 1000 cars ("main" vehicle in 1000 households).
Four histograms of same data

1. Count histogram

2. Density per unit x-axis
 Unit: 1000 mi.
 Bin: 5000 mi.

3. Same, but with unit width bins

4. Merging bins unequally.
How many histogram bins?

- Body temperatures (°F) of 100 students.
- Range is 96 to 99.4
- Which histogram do you prefer? And Why?
 - Sample vs population
 - Purpose of measuring the variation
- Does the choice depend on n? (Here n=100)
- It is the SHAPE that matters – which choice gives best idea of shape of distribution in the population?
Histograms vs Barplots

- **Barplots/dotplots (Ordinal/Discrete)**
 - have a bar for every value in the data
 - Works for discrete variables with a small number of possible values

- **Histograms (Quantitative)**
 - Divide the data values into `bins` (normally equal width)
 - Plots the frequency (count) or density (percentage) of data values in each bin
 - Works for both continuous and discrete data
U/H Ex 2.4: Nightlights and nearsightedness

- **Survey** of n=479 children
- **Response**: degree of myopia
 - 3 categories represented by colors.
- **Explanatory variable**: amount of sleeptime lighting
 - 3 categories across the x-axis.

What is the difference between a bar chart and a histogram
- Sometimes not much!!
Box plots: defining the box

- **Outlier:** > 1.5*IQR

- The **box** is defined by the median and lower and upper quartiles.
- The “**whisker**” extends to either the max/min, or to 1.5 times the IQR below quartile Q1 or above Q3.

- Points beyond 1.5 times the IQR above/below the **relevant quartile** are often called **outliers**.
- In the example:
 - No low outliers – lower whisker extends to minimum.
 - One high outlier, upper whisker extends to Q3 + 1.5 x IQR
Box plots: Example 2.5 of U/H

- Right handspans of 190 college students: 103 female, 97 male.
- Females we have seen before: centered at 20 cm, most in range 19 to 21 cm, range (excluding 2 outliers) is 16 cm to 23 cm
- Now we see, male distribution very similar, except 2.5 cm larger.

- With boxplots (as with density histograms) we can compare samples of different sizes.
Which for what variables?

<table>
<thead>
<tr>
<th></th>
<th>Pie chart</th>
<th>Barplot</th>
<th>Stem& Leaf or dotplot</th>
<th>Histogram or Boxplot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorical</td>
<td>YES</td>
<td>(yes)</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Ordinal</td>
<td>(yes)</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Quantitative (few discrete values)</td>
<td>(yes) U/H says no</td>
<td>YES</td>
<td>(yes)</td>
<td></td>
</tr>
<tr>
<td>Quantitative (continuous)</td>
<td></td>
<td></td>
<td></td>
<td>YES</td>
</tr>
</tbody>
</table>
Graphic with impact: #1

Population living on less than $10/day (2002 PPP)

3,499 million people

• Source: http://www.worldmapper.org/textindex/text_Income.html

• What do we need to know to interpret this graphic?
 • The normal visual world map
 – North America, West Africa
 • Population densities around the world
 – what about S. America, Nigeria?
Graphic with impact: #2

- Charles Joseph Minard’s 1869 map of Napoleon’s 1812 Russia Campaign
- See also: http://www.datavis.co/gallery/re-minard.php