HW6: Distributions of Functions of Random Variables / Distribution of Random Samples & Limit theorems

Directions. Show and explain all work to receive full credit. Homework is due on Friday, March 3rd at the beginning of class by 10:00am.

Problem 1. Let X with probability density function f_X given by:

$$f_X(x) = \frac{x}{2} \mathbb{1}_{[0,2)}(x)$$

and let

$$Y = 1 - \sqrt{4 - X^2}.$$

Find $f_Y(y)$ the probability density function of Y. The answer must include the support of f_Y.

Problem 2. Let X be a standard normal random variable $\mathcal{N}(0, 1)$ and let $Y = X^2$. Find $f_Y(y)$ the probability density function of Y. The answer must include the support of f_Y.

Problem 3. Let X and Y with joint probability density function f_{XY} given by:

$$f_{XY}(x, y) = xe^{-(x+y)} \mathbb{1}_{(0,\infty)^2}(x, y).$$

Find f_{WZ} the joint probability density function of $W = X + Y$ and $Z = Y/X$. The answer must include the support of f_{WZ}.

Problem 4. Let X and Y with joint probability density function f_{XY} given by:

$$f_{XY}(x, y) = \mathbb{1}_{[0,1]^2}(x, y)$$

and let $W = X/Y$ and $Z = X + Y$. Find $f_{WZ}(w, z)$ the joint probability density function of W and Z. The answer must include the support of f_{WZ}.

Problem 5. Let X be a continuous random variable on a probability space (Ω, \mathcal{A}, P). For $n \geq 1$, let (X_n) and (Y_n) be two sequences of continuous random variables on the same probability space such that $X_n = X + Y_n$, where

$$\mathbb{E}[Y_n] = \frac{1}{n} \text{ and } \text{Var}(Y_n) = \frac{\sigma^2}{n},$$

where $\sigma > 0$ is a constant. The objective is to show that the sequence (X_n) converges in probability to X.

(a) Let W be a continuous random variable with probability density function f_W. Show that for any positive constants a and ε,

$$P(|W - a| + a > \varepsilon) \geq P(|W| > \varepsilon).$$

Hint. Show that for $\varepsilon > a$,

$$P(|W - a| + a > \varepsilon) - P(|W| > \varepsilon) = \int_{-\varepsilon}^{2a-\varepsilon} f_W(w) \, dw.$$

(b) Derive from (a) that for any $\varepsilon > 0$,

$$P(|X_n - X| > \varepsilon) \leq P\left(|Y_n - E[Y_n]| > \varepsilon - \frac{1}{n}\right)$$

(c) Use Chebyshev’s inequality to conclude that (X_n) converges in probability to X.