Outline

Distributions of Two Random Variables
 Distributions of Two Discrete Random Variables
 Distributions of Two Continuous Random Variables

The Correlation Coefficient
 Covariance
 Correlation

Conditional Distributions
 Discrete case
 Continuous case
Outline

Distributions of Two Random Variables
 Distributions of Two Discrete Random Variables
 Distributions of Two Continuous Random Variables

The Correlation Coefficient
 Covariance
 Correlation

Conditional Distributions
 Discrete case
 Continuous case
Example: Climate Change

Mapping the Impacts of Climate Change

[Map showing the impacts of climate change across various regions, with different colors representing varying levels of impact.]

[Graph illustrating a network of nodes labeled with terms such as H2, CO2, VAP, AER, etc., connected by arrows indicating relationships or flows.]
Objectives

- Extend the definition of a probability distribution of one random variable to the **joint** probability distribution of two random variables
- Learn a way of quantifying the extent to which two random variables are related
- Define the conditional probability distribution of a random variable X given that Y has occurred
Definition
Let X and Y be two rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$. A **two-dimensional random variable** (X, Y) is a function mapping $(X, Y): \Omega \rightarrow \mathbb{R}^2$, such that for any numbers $x, y \in \mathbb{R}$:

$$\{\omega \in \Omega \mid X(\omega) \leq x \text{ and } Y(\omega) \leq y\} \in \mathcal{A}$$ \hspace{1cm} (1)

Definition (Joint cumulative distribution function)
Let X and Y be two rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$. The **joint (cumulative) distribution function** (joint c.d.f.) of X and Y is the function F_{XY} given by

$$F_{XY}(x, y) = \mathbb{P}(\{X \leq x\} \cap \{Y \leq y\}) \triangleq \mathbb{P}(X \leq x, Y \leq y),$$ \hspace{1cm} (2)

for $x, y \in \mathbb{R}$
Why Gen Y Loves Restaurants – And Restaurants Love Them Even More

According to a new report from the research firm Technomic, 42% of millennials say they visit “upscale casual-dining restaurants” at least once a month. That’s a higher percentage than Gen X (33%) and Baby Boomers (24%) who go to such restaurants once or more monthly.

Time, Aug. 15, 2012, By Brad Tuttle

<table>
<thead>
<tr>
<th>Age</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-19</td>
<td>83,267,556</td>
</tr>
<tr>
<td>20-34 (Millenials)</td>
<td>62,649,947</td>
</tr>
<tr>
<td>35-49 (Gen X)</td>
<td>63,779,197</td>
</tr>
<tr>
<td>50-69 (Baby Boomers)</td>
<td>71,216,117</td>
</tr>
<tr>
<td>70+</td>
<td>27,832,721</td>
</tr>
</tbody>
</table>

Demography in the US by age group [US Census data]
Definition

Let X and Y be two discrete rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$. The **joint pmf** of X and Y, denoted by p_{XY}, is defined as follows:

$$p_{XY}(x, y) = \mathbb{P} \left(\{X = x\} \cap \{Y = y\} \right) \triangleq \mathbb{P}(X = x, Y = y), \quad (3)$$

for $x \in X(\Omega)$ and $y \in Y(\Omega)$.
Why Gen Y Loves Restaurants – And Restaurants Love Them Even More

- $X = 1$: the person visits upscale restaurants at least once a month / $\{X = 0\} = \{X = 1\}^c$
- $Y = 1$: the person is a millenial / $Y = 2$: the person is a Gen X / $Y = 3$: the person is a Baby Boomer

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>36,337</td>
<td>42,732</td>
<td>47,003</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>26,313</td>
<td>21,047</td>
<td>24,213</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Count Data ($\times1000$)

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.184</td>
<td>0.216</td>
<td>0.238</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.133</td>
<td>0.106</td>
<td>0.123</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Joint Probability Mass Function $p_{XY}(x,y)$
Property

Let X and Y be two discrete rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with joint pmf p_{XY}, then the following holds:

1. $p_{XY}(x, y) \geq 0$, for $x \in X(\Omega)$ and $y \in Y(\Omega)$
2. $\sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} p_{XY}(x, y) = 1$

Property

Let X and Y be two discrete rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with joint pmf p_{XY}. Then, for any subset $B \subset X(\Omega) \times Y(\Omega)$

$$\mathbb{P}((X, Y) \in B) = \sum_{(x,y)\in B} p_{XY}(x, y)$$
Definition (Marginal distributions)

Let X and Y be two discrete rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with joint pmf p_{XY}. Then the pmf of X alone is called the **marginal probability mass function** of X and is defined by:

$$p_X(x) = \mathbb{P}(X = x) = \sum_{y \in Y(\Omega)} p_{XY}(x, y), \quad \text{for } x \in X(\Omega) \quad (4)$$

Similarly, the pmf of Y alone is called the **marginal probability mass function** of Y and is defined by:

$$p_Y(y) = \mathbb{P}(Y = y) = \sum_{x \in X(\Omega)} p_{XY}(x, y), \quad \text{for } y \in Y(\Omega) \quad (5)$$
Definition (Independence)

Let X and Y be two discrete rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with joint pmf p_{XY}. Let p_X and p_Y be the respective marginal pmfs of X and Y. Then X and Y are said to be independent if and only if:

$$p_{XY}(x, y) = p_X(x)p_Y(y), \quad \text{for all } x \in X(\Omega) \text{ and } y \in Y(\Omega) \quad (6)$$
Definition (Expected Value)

Let X and Y be two discrete rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with joint pmf p_{XY} and let $g : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a bounded piecewise continuous function. Then, the mathematical expectation of $g(X, Y)$, if it exists, is denoted by $\mathbb{E}[g(X, Y)]$ and is defined as follows:

$$
\mathbb{E}[g(X, Y)] = \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} g(x, y) p_{XY}(x, y) \quad (7)
$$
Example

Consider the following joint probability mass function:

\[p_{XY}(x, y) = \frac{xy^2}{13} \mathbb{1}_S(x, y) \]

with \(S = \{(1, 1), (1, 2), (2, 2)\} \)

1. Show that \(p_{XY} \) is a valid joint probability mass function.
2. What is \(P(X + Y \leq 3) \)?
3. Give the marginal probability mass functions of \(X \) and \(Y \).
4. What are the expected values of \(X \) and \(Y \)?
5. Are \(X \) and \(Y \) independent?
Definition (Joint probability density function)

Let X and Y be two continuous rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$. X and Y are said to be **jointly continuous** if there exists a function f_{XY} such that, for any Borel set on \mathbb{R}^2:

$$
\mathbb{P}((X, Y) \in B) = \int \int_B f_{XY}(x, y) \, dx \, dy
$$

(8)

Then function f_{XY} is called the **joint probability density function** of X and Y.

Moreover, if the joint distribution function F_{XY} is of class C^2, then the joint pdf of X and Y can be expressed in terms of partial derivatives:

$$
f_{XY}(x, y) = \frac{\partial^2 F(x, y)}{\partial x \partial y}
$$

(9)
Property

Let X and Y be two continuous rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with joint pdf f_{XY}, then the following holds:

$\begin{itemize}
 \item f_{XY}(x, y) \geq 0, \text{ for } x, y \in \mathbb{R}
 \item \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) \, dx \, dy = 1
\end{itemize}$

Example. Let X and Y be two continuous random variables with joint probability density function:

$f_{XY}(x, y) = 4xy \mathbb{1}_{[0,1]^2}(x,y)$

$\begin{itemize}
 \item Verify that f_{XY} is a valid joint probability density function.
 \item What is $\mathbb{P}(Y < X)$?
\end{itemize}$
Definition (Marginal distributions)

Let X and Y be two continuous rrvs on probability space (Ω, \mathcal{A}, P) with joint pdf f_{XY}. Then the pdf of X alone is called the **marginal probability density function** of X and is defined by:

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) \, dy, \quad \text{for } x \in \mathbb{R} \quad (10)$$

Similarly, the pdf of Y alone is called the **marginal probability density function** of Y and is defined by:

$$f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x, y) \, dx, \quad \text{for } y \in \mathbb{R} \quad (11)$$

Example. Let X and Y be two continuous random variables with joint probability density function :

$$f_{XY}(x, y) = 4xy 1_{[0,1]^2}(x, y)$$

What are the marginal probability density functions of X and Y?
Definition (Independence)

Let X and Y be two continuous random variables on probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with joint pdf f_{XY}. Let f_X and f_Y be the respective marginal pdfs of X and Y. Then X and Y are said to be independent if and only if:

$$f_{XY}(x, y) = f_X(x)f_Y(y), \quad \text{for all } x, y \in \mathbb{R}$$

(12)

Example. Let X and Y be two continuous random variables with joint probability density function:

$$f_{XY}(x, y) = 4xy \mathbb{1}_{[0,1]^2}(x, y)$$

Are X and Y independent?
Definition (Expected Value)

Let X and Y be two continuous rrvs on probability space (Ω, \mathcal{A}, P) with joint pdf f_{XY} and let $g : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a bounded piecewise continuous function. Then, the mathematical expectation of $g(X, Y)$, if it exists, is denoted by $\mathbb{E}[g(X, Y)]$ and is defined as follows:

$$\mathbb{E}[g(X, Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{XY}(x, y) \, dx \, dy \quad (13)$$

Example. Let X and Y be two continuous random variables with joint probability density function:

$$f_{XY}(x, y) = 4xy 1_{[0,1]^2}(x, y)$$

What are the expected values of X and Y?
Example

The joint probability density function of X and Y is given by:

$$f_{XY}(x, y) = \frac{6}{7} \left(x^2 + \frac{xy}{2} \right) 1_S(x, y)$$

with $S = \{(x, y) | 0 < x < 1, 0 < y < 2\}$

1. Show that f_{XY} is a valid joint probability density function.
2. Compute the marginal probability density function of X.
3. Find $\mathbb{P}(X > Y)$.
4. What are the expected values of X and Y?
5. Are X and Y independent?
Outline

Distributions of Two Random Variables
 Distributions of Two Discrete Random Variables
 Distributions of Two Continuous Random Variables

The Correlation Coefficient
 Covariance
 Correlation

Conditional Distributions
 Discrete case
 Continuous case
Definition (Covariance)

Let X and Y be two rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$. The **covariance** of X and Y, denoted by $\text{Cov}(X, Y)$, is defined as follows:

$$\text{Cov}(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$ \hspace{1cm} (14)

upon existence of the above expression.

- If X and Y are discrete rrv with joint pmf p_{XY}, then the covariance of X and Y is:

$$\text{Cov}(X, Y) = \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} (x - \mathbb{E}[X])(y - \mathbb{E}[Y])p_{XY}(x, y)$$ \hspace{1cm} (15)

- If X and Y are continuous rrv with joint pdf f_{XY}, then the covariance of X and Y is:

$$\text{Cov}(X, Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mathbb{E}[X])(y - \mathbb{E}[Y])f_{XY}(x, y) \, dx \, dy$$ \hspace{1cm} (16)
Theorem
Let X and Y be two rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$. The covariance of X and Y can be calculated as:

$$\text{Cov}(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y]$$ \hspace{1cm} (17)$$

Example 6. Suppose that X and Y have the following joint probability mass function:

<table>
<thead>
<tr>
<th>(X) (Y)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

What is the covariance of X and Y?
Property

Here are some properties of the covariance. For any random variables X and Y, we have:

1. $\text{Cov}(X, Y) = \text{Cov}(Y, X)$
2. $\text{Cov}(X, X) = \text{Var}(X)$
3. $\text{Cov}(aX, Y) = a\text{Cov}(X, Y)$ for $a \in \mathbb{R}$
4. Let X_1, \ldots, X_n be n random variables and Y_1, \ldots, Y_m be m random variables. Then:

$$
\text{Cov} \left(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j \right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \text{Cov}(X_i, Y_j)
$$
Definition (Correlation)

Let X and Y be two rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with respective standard deviations $\sigma_X = \sqrt{\text{Var}(X)}$ and $\sigma_Y = \sqrt{\text{Var}(Y)}$. The correlation of X and Y, denoted by ρ_{XY}, is defined as follows:

$$\rho_{XY} = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}$$ \hspace{1cm} (18)

upon existence of the above expression

Property

Let X and Y be two rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$.

$$-1 \leq \rho_{XY} \leq 1$$ \hspace{1cm} (19)
Interpretation of Correlation

The correlation coefficient of X and Y is interpreted as follows:

- If $\rho_{XY} = 1$, then X and Y are perfectly, positively, linearly correlated.
- If $\rho_{XY} = -1$, then X and Y are perfectly, negatively, linearly correlated. X and Y are also said to be perfectly linearly anticorrelated.
- If $\rho_{XY} = 0$, then X and Y are completely, linearly uncorrelated.
- If $0 < \rho_{XY} < 1$, then X and Y are positively, linearly correlated.
- If $-1 < \rho_{XY} < 0$, then X and Y are negatively, linearly correlated.
Example: Dining Habits

- $X = 1$: a person between 20 and 69 visits upscale restaurants at least once a month and $X = 0$ otherwise
- $Y = 1$: a person between 20 and 69 is a millenial
- $Y = 2$: a person between 20 and 69 is a Gen X
- $Y = 3$: a person between 20 and 69 is a Baby Boomer

The joint probability mass function of X and Y is given below:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.184</td>
<td>0.216</td>
<td>0.238</td>
</tr>
<tr>
<td>1</td>
<td>0.133</td>
<td>0.106</td>
<td>0.123</td>
</tr>
</tbody>
</table>

Compute the covariance and the correlation of X and Y. What can you say about the relationship between X and Y?
Correlation is not causation!

Number of people who drowned by falling into a pool correlates with Films Nicolas Cage appeared in

Correlation: 66.6% (r=0.666004)
Theorem
Let X and Y be two rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and let g_1 and g_2 be two bounded piecewise continuous functions. If X and Y are independent, then

$$
\mathbb{E}[g_1(X)g_2(Y)] = \mathbb{E}[g_1(X)] \mathbb{E}[g_2(Y)]
$$

provided that the expectations exist.

Theorem
Let X and Y be two rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$. If X and Y are independent, then

$$
\text{Cov}(X, Y) = \rho_{XY} = 0
$$
Example

Let X and Y be discrete random variables with joint pmf:

<table>
<thead>
<tr>
<th>X \ Y</th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0.2</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.2</td>
<td>0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

1. What is the correlation between X and Y?
2. Are X and Y independent?
Outline

Distributions of Two Random Variables
 Distributions of Two Discrete Random Variables
 Distributions of Two Continuous Random Variables

The Correlation Coefficient
 Covariance
 Correlation

Conditional Distributions
 Discrete case
 Continuous case
An international TV network company is interested in the relationship between the region of citizenship of its customers and their favorite sport.

<table>
<thead>
<tr>
<th>Sports</th>
<th>Citizenship</th>
<th>Africa</th>
<th>America</th>
<th>Asia</th>
<th>Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tennis</td>
<td></td>
<td>0.02</td>
<td>0.07</td>
<td>0.04</td>
<td>0.12</td>
</tr>
<tr>
<td>Basketball</td>
<td></td>
<td>0.03</td>
<td>0.11</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>Soccer</td>
<td></td>
<td>0.08</td>
<td>0.05</td>
<td>0.04</td>
<td>0.16</td>
</tr>
<tr>
<td>Football</td>
<td></td>
<td>0.01</td>
<td>0.17</td>
<td>0.02</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Definition

Let X and Y be two discrete rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with joint pmf p_{XY} and respective marginal pmfs p_X and p_Y. Then, for $y \in Y(\Omega)$, the **conditional probability mass function** of X given $Y = y$ is defined by:

$$p_{X|Y}(x|y) = \mathbb{P}(X = x|Y = y) = \frac{p_{XY}(x, y)}{p_Y(y)} \quad (22)$$

provided that $p_Y(y) \neq 0$.
Definition (Conditional Expectation)

Let X and Y be two discrete rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Then, for $y \in Y(\Omega)$, the conditional expectation of X given $Y = y$ is defined as follows:

$$
\mathbb{E}[X|Y = y] = \sum_{x \in X(\Omega)} x p_{X|Y}(x|y) \quad (23)
$$

Property (Linearity of conditional expectation)

Let X and Y be two rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$. If $c_1, c_2 \in \mathbb{R}$ and $g_1 : X(\Omega) \to \mathbb{R}$ and $g_2 : X(\Omega) \to \mathbb{R}$ are piecewise continuous functions. Then, for $y \in Y(\Omega)$, we have:

$$
\mathbb{E}[c_1 g_1(X) + c_2 g_2(X)|Y = y] = c_1 \mathbb{E}[g_1(X)|Y = y] + c_2 \mathbb{E}[g_2(X)|Y = y] \quad (24)
$$
Property

Let X and Y be two discrete rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$. If X and Y are independent, then, for $y \in Y(\Omega)$, we have:

$$p_{X|Y}(x|y) = p_X(x) \quad \text{for all } x \in X(\Omega)$$ \hfill (25)

Similarly, for $x \in X(\Omega)$, we have:

$$p_{Y|X}(y|x) = p_Y(y) \quad \text{for all } y \in Y(\Omega)$$ \hfill (26)

Also,

$$\mathbb{E}[X|Y = y] = \mathbb{E}[X]$$ \hfill (27)

Similarly, for $x \in X(\Omega)$, we have:

$$\mathbb{E}[Y|X = x] = \mathbb{E}[Y]$$ \hfill (28)

Remark: Those properties are also true for continuous rrvs.
Definition (Conditional Variance)

Let X and Y be two rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Then, for $y \in Y(\Omega)$, the **conditional variance** of X given $Y = y$ is defined as follows:

$$
\text{Var}(X|Y = y) = \mathbb{E}[(X - \mathbb{E}[X|Y = y])^2|Y = y] \quad (29)
$$

Property

For $y \in Y(\Omega)$, the **conditional variance** of X given $Y = y$ can be calculated as follows:

$$
\text{Var}(X|Y = y) = \mathbb{E}[X^2|Y = y] - (\mathbb{E}[X|Y = y])^2 \quad (30)
$$
Definition

Let X and Y be two continuous rrvs on probability space (Ω, \mathcal{A}, P) with joint pdf f_{XY} and respective marginal pdfs f_X and f_Y. Then, for $y \in \mathbb{R}$, the conditional probability density function of X given $Y = y$ is defined by:

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)} \quad (31)$$

provided that $f_Y(y) \neq 0$.
Definition (Conditional Expectation)

Let X and Y be two continuous rrvs on probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Then, for $y \in \mathbb{R}$, the \textit{conditional expectation} of X given $Y = y$ is defined as follows:

$$
\mathbb{E}[X|Y = y] = \int_{-\infty}^{\infty} xf_{X|Y}(x|y) \, dx
$$

(32)
Example

Let X and Y be two continuous random variables with joint probability density function:

$$f_{XY}(x, y) = \frac{3}{2} \mathbb{1}_S(x, y)$$

with $S = \{(x, y) | x^2 < y < 1, 0 < x < 1\}$

Compute the expected value of Y given $X = x$.
